ClassiCube/ClassicalSharp/Math/RayTracer.cs

79 lines
3.3 KiB
C#
Raw Normal View History

2017-01-20 09:12:04 +11:00
// Copyright 2014-2017 ClassicalSharp | Licensed under BSD-3
2016-06-11 15:29:45 +10:00
using System;
using ClassicalSharp.Map;
using OpenTK;
using BlockID = System.UInt16;
2016-06-11 15:29:45 +10:00
namespace ClassicalSharp {
// http://www.xnawiki.com/index.php/Voxel_traversal
// https://web.archive.org/web/20120113051728/http://www.xnawiki.com/index.php?title=Voxel_traversal
// Implementation based on: "A Fast Voxel Traversal Algorithm for Ray Tracing"
// John Amanatides, Andrew Woo
// http://www.cse.yorku.ca/~amana/research/grid.pdf
// http://www.devmaster.net/articles/raytracing_series/A%20faster%20voxel%20traversal%20algorithm%20for%20ray%20tracing.pdf
public sealed class RayTracer {
public int X, Y, Z;
public Vector3 Origin, Dir;
// Block data
public Vector3 Min, Max;
public BlockID Block;
Vector3I step;
2016-06-11 15:29:45 +10:00
Vector3 tMax, tDelta;
public void SetVectors(Vector3 origin, Vector3 dir) {
Origin = origin; Dir = dir;
Vector3I start = Vector3I.Floor(origin); // Rounds the position's X, Y and Z down to the nearest integer values.
2016-06-11 15:29:45 +10:00
// The cell in which the ray starts.
X = start.X; Y = start.Y; Z = start.Z;
// Determine which way we go.
step.X = Math.Sign(dir.X); step.Y = Math.Sign(dir.Y); step.Z = Math.Sign(dir.Z);
2016-06-11 15:29:45 +10:00
// Calculate cell boundaries. When the step (i.e. direction sign) is positive,
// the next boundary is AFTER our current position, meaning that we have to add 1.
// Otherwise, it is BEFORE our current position, in which case we add nothing.
Vector3I cellBoundary;
cellBoundary.X = start.X + (step.X > 0 ? 1 : 0);
cellBoundary.Y = start.Y + (step.Y > 0 ? 1 : 0);
cellBoundary.Z = start.Z + (step.Z > 0 ? 1 : 0);
2016-06-11 15:29:45 +10:00
// NOTE: we want it so if dir.x = 0, tmax.x = positive infinity
// Determine how far we can travel along the ray before we hit a voxel boundary.
tMax = new Vector3(
2018-03-30 14:47:49 +11:00
(cellBoundary.X - origin.X) / dir.X, // Boundary is a plane on the YZ axis.
(cellBoundary.Y - origin.Y) / dir.Y, // Boundary is a plane on the XZ axis.
(cellBoundary.Z - origin.Z) / dir.Z); // Boundary is a plane on the XY axis.
if (Single.IsNaN(tMax.X) || Single.IsInfinity(tMax.X)) tMax.X = Single.PositiveInfinity;
if (Single.IsNaN(tMax.Y) || Single.IsInfinity(tMax.Y)) tMax.Y = Single.PositiveInfinity;
if (Single.IsNaN(tMax.Z) || Single.IsInfinity(tMax.Z)) tMax.Z = Single.PositiveInfinity;
2016-06-11 15:29:45 +10:00
// Determine how far we must travel along the ray before we have crossed a gridcell.
tDelta = new Vector3(step.X / dir.X, step.Y / dir.Y, step.Z / dir.Z);
if (Single.IsNaN(tDelta.X)) tDelta.X = Single.PositiveInfinity;
if (Single.IsNaN(tDelta.Y)) tDelta.Y = Single.PositiveInfinity;
if (Single.IsNaN(tDelta.Z)) tDelta.Z = Single.PositiveInfinity;
2016-06-11 15:29:45 +10:00
}
public void Step() {
// For each step, determine which distance to the next voxel boundary is lowest (i.e.
// which voxel boundary is nearest) and walk that way.
if (tMax.X < tMax.Y && tMax.X < tMax.Z) {
2016-06-11 15:29:45 +10:00
// tMax.X is the lowest, an YZ cell boundary plane is nearest.
X += step.X;
tMax.X += tDelta.X;
} else if (tMax.Y < tMax.Z) {
2016-06-11 15:29:45 +10:00
// tMax.Y is the lowest, an XZ cell boundary plane is nearest.
Y += step.Y;
tMax.Y += tDelta.Y;
} else {
// tMax.Z is the lowest, an XY cell boundary plane is nearest.
Z += step.Z;
tMax.Z += tDelta.Z;
}
}
}
}