blender/tests/python/bl_pyapi_prop_array.py
2024-11-03 21:50:33 +11:00

323 lines
11 KiB
Python

# SPDX-FileCopyrightText: 2020-2023 Blender Authors
#
# SPDX-License-Identifier: Apache-2.0
# ./blender.bin --background --python tests/python/bl_pyapi_prop_array.py -- --verbose
import bpy
from bpy.props import (
BoolVectorProperty,
FloatVectorProperty,
IntVectorProperty,
)
import unittest
import numpy as np
id_inst = bpy.context.scene
id_type = bpy.types.Scene
# -----------------------------------------------------------------------------
# Utility Functions
def seq_items_xform(data, xform_fn):
"""
Recursively expand items using ``xform_fn``.
"""
if hasattr(data, "__len__"):
return tuple(seq_items_xform(v, xform_fn) for v in data)
return xform_fn(data)
def seq_items_as_tuple(data):
"""
Return nested sequences as a nested tuple.
Useful when comparing different kinds of nested sequences.
"""
return seq_items_xform(data, lambda v: v)
def seq_items_as_dims(data):
"""
Nested length calculation, extracting the length from each sequence.
Where a 4x4 matrix returns ``(4, 4)`` for example.
"""
return ((len(data),) + seq_items_as_dims(data[0])) if hasattr(data, "__len__") else ()
# -----------------------------------------------------------------------------
# Tests
class TestPropArray(unittest.TestCase):
def setUp(self):
id_type.test_array_f = FloatVectorProperty(size=10)
id_type.test_array_f_2d = FloatVectorProperty(size=(4, 1))
id_type.test_array_f_3d = FloatVectorProperty(size=(3, 2, 4))
id_type.test_array_i = IntVectorProperty(size=10)
id_type.test_array_i_2d = IntVectorProperty(size=(4, 1))
id_type.test_array_i_3d = IntVectorProperty(size=(3, 2, 4))
def tearDown(self):
del id_type.test_array_f
del id_type.test_array_f_2d
del id_type.test_array_f_3d
del id_type.test_array_i
del id_type.test_array_i_2d
del id_type.test_array_i_3d
@staticmethod
def parse_test_args(prop_array_first_dim, prop_type, prop_size):
match prop_type:
case 'INT':
expected_dtype = np.int32
wrong_kind_dtype = np.float32
wrong_size_dtype = np.int64
case 'FLOAT':
expected_dtype = np.float32
wrong_kind_dtype = np.int32
wrong_size_dtype = np.float64
case _:
raise AssertionError("Unexpected property type '%s'" % prop_type)
expected_length = np.prod(prop_size)
num_dims = len(prop_size)
assert expected_length > 0
too_short_length = expected_length - 1
match num_dims:
case 1:
def get_flat_iterable_all_dimensions():
return prop_array_first_dim[:]
case 2:
def get_flat_iterable_all_dimensions():
return (flat_elem for array_1d in prop_array_first_dim[:] for flat_elem in array_1d[:])
case 3:
def get_flat_iterable_all_dimensions():
return (flat_elem
for array_2d in prop_array_first_dim[:]
for array_1d in array_2d[:]
for flat_elem in array_1d[:])
case _:
raise AssertionError("Number of dimensions must be 1, 2 or 3, but was %i" % num_dims)
return (expected_dtype, wrong_kind_dtype, wrong_size_dtype, expected_length, too_short_length,
get_flat_iterable_all_dimensions)
def do_test_foreach_getset_current_dimension(self, prop_array, expected_dtype, wrong_kind_dtype, wrong_size_dtype,
expected_length, too_short_length, get_flat_iterable_all_dimensions):
with self.assertRaises(TypeError):
prop_array.foreach_set(range(too_short_length))
prop_array.foreach_set(range(5, 5 + expected_length))
with self.assertRaises(TypeError):
prop_array.foreach_set(np.arange(too_short_length, dtype=expected_dtype))
with self.assertRaises(TypeError):
prop_array.foreach_set(np.arange(expected_length, dtype=wrong_size_dtype))
with self.assertRaises(TypeError):
prop_array.foreach_get(np.arange(expected_length, dtype=wrong_kind_dtype))
a = np.arange(expected_length, dtype=expected_dtype)
prop_array.foreach_set(a)
with self.assertRaises(TypeError):
prop_array.foreach_set(a[:too_short_length])
for v1, v2 in zip(a, get_flat_iterable_all_dimensions()):
self.assertEqual(v1, v2)
b = np.empty(expected_length, dtype=expected_dtype)
prop_array.foreach_get(b)
for v1, v2 in zip(a, b):
self.assertEqual(v1, v2)
b = [None] * expected_length
prop_array.foreach_get(b)
for v1, v2 in zip(a, b):
self.assertEqual(v1, v2)
def do_test_foreach_getset(self, prop_array, prop_type, prop_size):
if not isinstance(prop_size, (tuple, list)):
prop_size = (prop_size,)
num_dimensions = len(prop_size)
test_args = self.parse_test_args(prop_array, prop_type, prop_size)
# Test that foreach_get/foreach_set work, and work the same regardless of the current dimension/sub-array being
# accessed.
self.do_test_foreach_getset_current_dimension(prop_array, *test_args)
if num_dimensions > 1:
for i in range(prop_size[0]):
self.do_test_foreach_getset_current_dimension(prop_array[i], *test_args)
if num_dimensions > 2:
for j in range(prop_size[1]):
self.do_test_foreach_getset_current_dimension(prop_array[i][j], *test_args)
def test_foreach_getset_i(self):
self.do_test_foreach_getset(id_inst.test_array_i, 'INT', 10)
def test_foreach_getset_f(self):
self.do_test_foreach_getset(id_inst.test_array_f, 'FLOAT', 10)
def test_foreach_getset_i_2d(self):
self.do_test_foreach_getset(id_inst.test_array_i_2d, 'INT', (4, 1))
def test_foreach_getset_f_2d(self):
self.do_test_foreach_getset(id_inst.test_array_f_2d, 'FLOAT', (4, 1))
def test_foreach_getset_i_3d(self):
self.do_test_foreach_getset(id_inst.test_array_i_3d, 'INT', (3, 2, 4))
def test_foreach_getset_f_3d(self):
self.do_test_foreach_getset(id_inst.test_array_f_3d, 'FLOAT', (3, 2, 4))
class TestPropArrayMultiDimensional(unittest.TestCase):
def setUp(self):
self._initial_dir = set(dir(id_type))
def tearDown(self):
for member in (set(dir(id_type)) - self._initial_dir):
delattr(id_type, member)
def test_defaults(self):
# The data is in int format, converted into float & bool to avoid duplication.
default_data = (
# 1D.
(1,),
(1, 2),
(1, 2, 3),
(1, 2, 3, 4),
# 2D.
((1,),),
((1,), (11,)),
((1, 2), (11, 22)),
((1, 2, 3), (11, 22, 33)),
((1, 2, 3, 4), (11, 22, 33, 44)),
# 3D.
(((1,),),),
((1,), (11,), (111,)),
((1, 2), (11, 22), (111, 222),),
((1, 2, 3), (11, 22, 33), (111, 222, 333)),
((1, 2, 3, 4), (11, 22, 33, 44), (111, 222, 333, 444)),
)
for data in default_data:
for (vector_prop_fn, xform_fn) in (
(BoolVectorProperty, lambda v: bool(v % 2)),
(FloatVectorProperty, lambda v: float(v)),
(IntVectorProperty, lambda v: v),
):
data_native = seq_items_xform(data, xform_fn)
size = seq_items_as_dims(data)
id_type.temp = vector_prop_fn(size=size, default=data_native)
data_as_tuple = seq_items_as_tuple(id_inst.temp)
self.assertEqual(data_as_tuple, data_native)
del id_type.temp
def test_matrix(self):
data = ((1, 2, 3, 4), (11, 22, 33, 44), (111, 222, 333, 444), (1111, 2222, 3333, 4444),)
data_native = seq_items_xform(data, lambda v: float(v))
id_type.temp = FloatVectorProperty(size=(4, 4), subtype='MATRIX', default=data_native)
data_as_tuple = seq_items_as_tuple(id_inst.temp)
self.assertEqual(data_as_tuple, data_native)
del id_type.temp
def test_matrix_with_callbacks(self):
# """
# Internally matrices have rows/columns swapped,
# This test ensures this is being done properly.
# """
data = ((1, 2, 3, 4), (11, 22, 33, 44), (111, 222, 333, 444), (1111, 2222, 3333, 4444),)
data_native = seq_items_xform(data, lambda v: float(v))
local_data = {"array": data}
def get_fn(id_arg):
return local_data["array"]
def set_fn(id_arg, value):
local_data["array"] = value
id_type.temp = FloatVectorProperty(size=(4, 4), subtype='MATRIX', get=get_fn, set=set_fn)
id_inst.temp = data_native
data_as_tuple = seq_items_as_tuple(id_inst.temp)
self.assertEqual(data_as_tuple, data_native)
del id_type.temp
class TestPropArrayDynamicAssign(unittest.TestCase):
"""
Pixels are dynamic in the sense the size can change however the assignment does not define the size.
"""
dims = 12
def setUp(self):
self.image = bpy.data.images.new("", self.dims, self.dims)
def tearDown(self):
bpy.data.images.remove(self.image)
self.image = None
def test_assign_fixed_under_1px(self):
image = self.image
with self.assertRaises(ValueError):
image.pixels = [1.0, 1.0, 1.0, 1.0]
def test_assign_fixed_under_0px(self):
image = self.image
with self.assertRaises(ValueError):
image.pixels = []
def test_assign_fixed_over_by_1px(self):
image = self.image
with self.assertRaises(ValueError):
image.pixels = ([1.0, 1.0, 1.0, 1.0] * (self.dims * self.dims)) + [1.0]
def test_assign_fixed(self):
# Valid assignment, ensure it works as intended.
image = self.image
values = [1.0, 0.0, 1.0, 0.0] * (self.dims * self.dims)
image.pixels = values
self.assertEqual(tuple(values), tuple(image.pixels))
class TestPropArrayDynamicArg(unittest.TestCase):
"""
Index array, a dynamic array argument which defines its own length.
"""
dims = 8
def setUp(self):
self.me = bpy.data.meshes.new("")
self.me.vertices.add(self.dims)
self.ob = bpy.data.objects.new("", self.me)
def tearDown(self):
bpy.data.objects.remove(self.ob)
bpy.data.meshes.remove(self.me)
self.me = None
self.ob = None
def test_param_dynamic(self):
ob = self.ob
vg = ob.vertex_groups.new(name="")
# Add none.
vg.add(index=(), weight=1.0, type='REPLACE')
for i in range(self.dims):
with self.assertRaises(RuntimeError):
vg.weight(i)
# Add all.
vg.add(index=range(self.dims), weight=1.0, type='REPLACE')
self.assertEqual(tuple([1.0] * self.dims), tuple([vg.weight(i) for i in range(self.dims)]))
if __name__ == '__main__':
import sys
sys.argv = [__file__] + (sys.argv[sys.argv.index("--") + 1:] if "--" in sys.argv else [])
unittest.main()