mirror of
https://projects.blender.org/blender/blender.git
synced 2025-01-22 07:22:12 -05:00
323 lines
11 KiB
Python
323 lines
11 KiB
Python
# SPDX-FileCopyrightText: 2020-2023 Blender Authors
|
|
#
|
|
# SPDX-License-Identifier: Apache-2.0
|
|
|
|
# ./blender.bin --background --python tests/python/bl_pyapi_prop_array.py -- --verbose
|
|
import bpy
|
|
from bpy.props import (
|
|
BoolVectorProperty,
|
|
FloatVectorProperty,
|
|
IntVectorProperty,
|
|
)
|
|
import unittest
|
|
import numpy as np
|
|
|
|
id_inst = bpy.context.scene
|
|
id_type = bpy.types.Scene
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# Utility Functions
|
|
|
|
def seq_items_xform(data, xform_fn):
|
|
"""
|
|
Recursively expand items using ``xform_fn``.
|
|
"""
|
|
if hasattr(data, "__len__"):
|
|
return tuple(seq_items_xform(v, xform_fn) for v in data)
|
|
return xform_fn(data)
|
|
|
|
|
|
def seq_items_as_tuple(data):
|
|
"""
|
|
Return nested sequences as a nested tuple.
|
|
Useful when comparing different kinds of nested sequences.
|
|
"""
|
|
return seq_items_xform(data, lambda v: v)
|
|
|
|
|
|
def seq_items_as_dims(data):
|
|
"""
|
|
Nested length calculation, extracting the length from each sequence.
|
|
Where a 4x4 matrix returns ``(4, 4)`` for example.
|
|
"""
|
|
return ((len(data),) + seq_items_as_dims(data[0])) if hasattr(data, "__len__") else ()
|
|
|
|
|
|
# -----------------------------------------------------------------------------
|
|
# Tests
|
|
|
|
class TestPropArray(unittest.TestCase):
|
|
def setUp(self):
|
|
id_type.test_array_f = FloatVectorProperty(size=10)
|
|
id_type.test_array_f_2d = FloatVectorProperty(size=(4, 1))
|
|
id_type.test_array_f_3d = FloatVectorProperty(size=(3, 2, 4))
|
|
id_type.test_array_i = IntVectorProperty(size=10)
|
|
id_type.test_array_i_2d = IntVectorProperty(size=(4, 1))
|
|
id_type.test_array_i_3d = IntVectorProperty(size=(3, 2, 4))
|
|
|
|
def tearDown(self):
|
|
del id_type.test_array_f
|
|
del id_type.test_array_f_2d
|
|
del id_type.test_array_f_3d
|
|
del id_type.test_array_i
|
|
del id_type.test_array_i_2d
|
|
del id_type.test_array_i_3d
|
|
|
|
@staticmethod
|
|
def parse_test_args(prop_array_first_dim, prop_type, prop_size):
|
|
match prop_type:
|
|
case 'INT':
|
|
expected_dtype = np.int32
|
|
wrong_kind_dtype = np.float32
|
|
wrong_size_dtype = np.int64
|
|
case 'FLOAT':
|
|
expected_dtype = np.float32
|
|
wrong_kind_dtype = np.int32
|
|
wrong_size_dtype = np.float64
|
|
case _:
|
|
raise AssertionError("Unexpected property type '%s'" % prop_type)
|
|
|
|
expected_length = np.prod(prop_size)
|
|
num_dims = len(prop_size)
|
|
|
|
assert expected_length > 0
|
|
too_short_length = expected_length - 1
|
|
|
|
match num_dims:
|
|
case 1:
|
|
def get_flat_iterable_all_dimensions():
|
|
return prop_array_first_dim[:]
|
|
case 2:
|
|
def get_flat_iterable_all_dimensions():
|
|
return (flat_elem for array_1d in prop_array_first_dim[:] for flat_elem in array_1d[:])
|
|
case 3:
|
|
def get_flat_iterable_all_dimensions():
|
|
return (flat_elem
|
|
for array_2d in prop_array_first_dim[:]
|
|
for array_1d in array_2d[:]
|
|
for flat_elem in array_1d[:])
|
|
case _:
|
|
raise AssertionError("Number of dimensions must be 1, 2 or 3, but was %i" % num_dims)
|
|
|
|
return (expected_dtype, wrong_kind_dtype, wrong_size_dtype, expected_length, too_short_length,
|
|
get_flat_iterable_all_dimensions)
|
|
|
|
def do_test_foreach_getset_current_dimension(self, prop_array, expected_dtype, wrong_kind_dtype, wrong_size_dtype,
|
|
expected_length, too_short_length, get_flat_iterable_all_dimensions):
|
|
with self.assertRaises(TypeError):
|
|
prop_array.foreach_set(range(too_short_length))
|
|
|
|
prop_array.foreach_set(range(5, 5 + expected_length))
|
|
|
|
with self.assertRaises(TypeError):
|
|
prop_array.foreach_set(np.arange(too_short_length, dtype=expected_dtype))
|
|
|
|
with self.assertRaises(TypeError):
|
|
prop_array.foreach_set(np.arange(expected_length, dtype=wrong_size_dtype))
|
|
|
|
with self.assertRaises(TypeError):
|
|
prop_array.foreach_get(np.arange(expected_length, dtype=wrong_kind_dtype))
|
|
|
|
a = np.arange(expected_length, dtype=expected_dtype)
|
|
prop_array.foreach_set(a)
|
|
|
|
with self.assertRaises(TypeError):
|
|
prop_array.foreach_set(a[:too_short_length])
|
|
|
|
for v1, v2 in zip(a, get_flat_iterable_all_dimensions()):
|
|
self.assertEqual(v1, v2)
|
|
|
|
b = np.empty(expected_length, dtype=expected_dtype)
|
|
prop_array.foreach_get(b)
|
|
for v1, v2 in zip(a, b):
|
|
self.assertEqual(v1, v2)
|
|
|
|
b = [None] * expected_length
|
|
prop_array.foreach_get(b)
|
|
for v1, v2 in zip(a, b):
|
|
self.assertEqual(v1, v2)
|
|
|
|
def do_test_foreach_getset(self, prop_array, prop_type, prop_size):
|
|
if not isinstance(prop_size, (tuple, list)):
|
|
prop_size = (prop_size,)
|
|
num_dimensions = len(prop_size)
|
|
|
|
test_args = self.parse_test_args(prop_array, prop_type, prop_size)
|
|
|
|
# Test that foreach_get/foreach_set work, and work the same regardless of the current dimension/sub-array being
|
|
# accessed.
|
|
self.do_test_foreach_getset_current_dimension(prop_array, *test_args)
|
|
if num_dimensions > 1:
|
|
for i in range(prop_size[0]):
|
|
self.do_test_foreach_getset_current_dimension(prop_array[i], *test_args)
|
|
if num_dimensions > 2:
|
|
for j in range(prop_size[1]):
|
|
self.do_test_foreach_getset_current_dimension(prop_array[i][j], *test_args)
|
|
|
|
def test_foreach_getset_i(self):
|
|
self.do_test_foreach_getset(id_inst.test_array_i, 'INT', 10)
|
|
|
|
def test_foreach_getset_f(self):
|
|
self.do_test_foreach_getset(id_inst.test_array_f, 'FLOAT', 10)
|
|
|
|
def test_foreach_getset_i_2d(self):
|
|
self.do_test_foreach_getset(id_inst.test_array_i_2d, 'INT', (4, 1))
|
|
|
|
def test_foreach_getset_f_2d(self):
|
|
self.do_test_foreach_getset(id_inst.test_array_f_2d, 'FLOAT', (4, 1))
|
|
|
|
def test_foreach_getset_i_3d(self):
|
|
self.do_test_foreach_getset(id_inst.test_array_i_3d, 'INT', (3, 2, 4))
|
|
|
|
def test_foreach_getset_f_3d(self):
|
|
self.do_test_foreach_getset(id_inst.test_array_f_3d, 'FLOAT', (3, 2, 4))
|
|
|
|
|
|
class TestPropArrayMultiDimensional(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
self._initial_dir = set(dir(id_type))
|
|
|
|
def tearDown(self):
|
|
for member in (set(dir(id_type)) - self._initial_dir):
|
|
delattr(id_type, member)
|
|
|
|
def test_defaults(self):
|
|
# The data is in int format, converted into float & bool to avoid duplication.
|
|
default_data = (
|
|
# 1D.
|
|
(1,),
|
|
(1, 2),
|
|
(1, 2, 3),
|
|
(1, 2, 3, 4),
|
|
# 2D.
|
|
((1,),),
|
|
((1,), (11,)),
|
|
((1, 2), (11, 22)),
|
|
((1, 2, 3), (11, 22, 33)),
|
|
((1, 2, 3, 4), (11, 22, 33, 44)),
|
|
# 3D.
|
|
(((1,),),),
|
|
((1,), (11,), (111,)),
|
|
((1, 2), (11, 22), (111, 222),),
|
|
((1, 2, 3), (11, 22, 33), (111, 222, 333)),
|
|
((1, 2, 3, 4), (11, 22, 33, 44), (111, 222, 333, 444)),
|
|
)
|
|
for data in default_data:
|
|
for (vector_prop_fn, xform_fn) in (
|
|
(BoolVectorProperty, lambda v: bool(v % 2)),
|
|
(FloatVectorProperty, lambda v: float(v)),
|
|
(IntVectorProperty, lambda v: v),
|
|
):
|
|
data_native = seq_items_xform(data, xform_fn)
|
|
size = seq_items_as_dims(data)
|
|
id_type.temp = vector_prop_fn(size=size, default=data_native)
|
|
data_as_tuple = seq_items_as_tuple(id_inst.temp)
|
|
self.assertEqual(data_as_tuple, data_native)
|
|
del id_type.temp
|
|
|
|
def test_matrix(self):
|
|
data = ((1, 2, 3, 4), (11, 22, 33, 44), (111, 222, 333, 444), (1111, 2222, 3333, 4444),)
|
|
data_native = seq_items_xform(data, lambda v: float(v))
|
|
id_type.temp = FloatVectorProperty(size=(4, 4), subtype='MATRIX', default=data_native)
|
|
data_as_tuple = seq_items_as_tuple(id_inst.temp)
|
|
self.assertEqual(data_as_tuple, data_native)
|
|
del id_type.temp
|
|
|
|
def test_matrix_with_callbacks(self):
|
|
# """
|
|
# Internally matrices have rows/columns swapped,
|
|
# This test ensures this is being done properly.
|
|
# """
|
|
data = ((1, 2, 3, 4), (11, 22, 33, 44), (111, 222, 333, 444), (1111, 2222, 3333, 4444),)
|
|
data_native = seq_items_xform(data, lambda v: float(v))
|
|
local_data = {"array": data}
|
|
|
|
def get_fn(id_arg):
|
|
return local_data["array"]
|
|
|
|
def set_fn(id_arg, value):
|
|
local_data["array"] = value
|
|
|
|
id_type.temp = FloatVectorProperty(size=(4, 4), subtype='MATRIX', get=get_fn, set=set_fn)
|
|
id_inst.temp = data_native
|
|
data_as_tuple = seq_items_as_tuple(id_inst.temp)
|
|
self.assertEqual(data_as_tuple, data_native)
|
|
del id_type.temp
|
|
|
|
|
|
class TestPropArrayDynamicAssign(unittest.TestCase):
|
|
"""
|
|
Pixels are dynamic in the sense the size can change however the assignment does not define the size.
|
|
"""
|
|
|
|
dims = 12
|
|
|
|
def setUp(self):
|
|
self.image = bpy.data.images.new("", self.dims, self.dims)
|
|
|
|
def tearDown(self):
|
|
bpy.data.images.remove(self.image)
|
|
self.image = None
|
|
|
|
def test_assign_fixed_under_1px(self):
|
|
image = self.image
|
|
with self.assertRaises(ValueError):
|
|
image.pixels = [1.0, 1.0, 1.0, 1.0]
|
|
|
|
def test_assign_fixed_under_0px(self):
|
|
image = self.image
|
|
with self.assertRaises(ValueError):
|
|
image.pixels = []
|
|
|
|
def test_assign_fixed_over_by_1px(self):
|
|
image = self.image
|
|
with self.assertRaises(ValueError):
|
|
image.pixels = ([1.0, 1.0, 1.0, 1.0] * (self.dims * self.dims)) + [1.0]
|
|
|
|
def test_assign_fixed(self):
|
|
# Valid assignment, ensure it works as intended.
|
|
image = self.image
|
|
values = [1.0, 0.0, 1.0, 0.0] * (self.dims * self.dims)
|
|
image.pixels = values
|
|
self.assertEqual(tuple(values), tuple(image.pixels))
|
|
|
|
|
|
class TestPropArrayDynamicArg(unittest.TestCase):
|
|
"""
|
|
Index array, a dynamic array argument which defines its own length.
|
|
"""
|
|
|
|
dims = 8
|
|
|
|
def setUp(self):
|
|
self.me = bpy.data.meshes.new("")
|
|
self.me.vertices.add(self.dims)
|
|
self.ob = bpy.data.objects.new("", self.me)
|
|
|
|
def tearDown(self):
|
|
bpy.data.objects.remove(self.ob)
|
|
bpy.data.meshes.remove(self.me)
|
|
self.me = None
|
|
self.ob = None
|
|
|
|
def test_param_dynamic(self):
|
|
ob = self.ob
|
|
vg = ob.vertex_groups.new(name="")
|
|
|
|
# Add none.
|
|
vg.add(index=(), weight=1.0, type='REPLACE')
|
|
for i in range(self.dims):
|
|
with self.assertRaises(RuntimeError):
|
|
vg.weight(i)
|
|
|
|
# Add all.
|
|
vg.add(index=range(self.dims), weight=1.0, type='REPLACE')
|
|
self.assertEqual(tuple([1.0] * self.dims), tuple([vg.weight(i) for i in range(self.dims)]))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
import sys
|
|
sys.argv = [__file__] + (sys.argv[sys.argv.index("--") + 1:] if "--" in sys.argv else [])
|
|
unittest.main()
|