godot/doc/classes/AudioStreamGenerator.xml
Lane Barnes 2e8c941812
Fix example code snippet in AudioStreamGenerator.xml
I was playing around with C# code snippet but I kept hearing a clipping sound. I think this is because the phase variable is being set to 0 in the wrong spot.

The phase at the end of the FillBuffer() method is some non zero number. When FillBuffer is called again, the phase is suddenly changed back to zero. This causes the end of one sin wave segment to be out of sync with the next sin wave segment. The sin wave needs to be continuous between FillBuffer calls so no clipping sound occurs.

Moving the phase variable out of FillBuffer and putting it in a scope above makes it retain its value between FillBuffer calls, making the sin wave continuous, and the clipping sound is gone.

For further proof, the demo project "Audio Generator Demo" has the phase variable be one scope above FillBuffer and it does not set phase=0 inside of FillBuffer. If anything, I'm fixing this documentation to match the working demo
2024-11-23 15:36:03 -07:00

78 lines
4 KiB
XML

<?xml version="1.0" encoding="UTF-8" ?>
<class name="AudioStreamGenerator" inherits="AudioStream" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="../class.xsd">
<brief_description>
An audio stream with utilities for procedural sound generation.
</brief_description>
<description>
[AudioStreamGenerator] is a type of audio stream that does not play back sounds on its own; instead, it expects a script to generate audio data for it. See also [AudioStreamGeneratorPlayback].
Here's a sample on how to use it to generate a sine wave:
[codeblocks]
[gdscript]
var playback # Will hold the AudioStreamGeneratorPlayback.
@onready var sample_hz = $AudioStreamPlayer.stream.mix_rate
var pulse_hz = 440.0 # The frequency of the sound wave.
var phase = 0.0
func _ready():
$AudioStreamPlayer.play()
playback = $AudioStreamPlayer.get_stream_playback()
fill_buffer()
func fill_buffer():
var increment = pulse_hz / sample_hz
var frames_available = playback.get_frames_available()
for i in range(frames_available):
playback.push_frame(Vector2.ONE * sin(phase * TAU))
phase = fmod(phase + increment, 1.0)
[/gdscript]
[csharp]
[Export] public AudioStreamPlayer Player { get; set; }
private AudioStreamGeneratorPlayback _playback; // Will hold the AudioStreamGeneratorPlayback.
private float _sampleHz;
private float _pulseHz = 440.0f; // The frequency of the sound wave.
private double phase = 0.0;
public override void _Ready()
{
if (Player.Stream is AudioStreamGenerator generator) // Type as a generator to access MixRate.
{
_sampleHz = generator.MixRate;
Player.Play();
_playback = (AudioStreamGeneratorPlayback)Player.GetStreamPlayback();
FillBuffer();
}
}
public void FillBuffer()
{
float increment = _pulseHz / _sampleHz;
int framesAvailable = _playback.GetFramesAvailable();
for (int i = 0; i &lt; framesAvailable; i++)
{
_playback.PushFrame(Vector2.One * (float)Mathf.Sin(phase * Mathf.Tau));
phase = Mathf.PosMod(phase + increment, 1.0);
}
}
[/csharp]
[/codeblocks]
In the example above, the "AudioStreamPlayer" node must use an [AudioStreamGenerator] as its stream. The [code]fill_buffer[/code] function provides audio data for approximating a sine wave.
See also [AudioEffectSpectrumAnalyzer] for performing real-time audio spectrum analysis.
[b]Note:[/b] Due to performance constraints, this class is best used from C# or from a compiled language via GDExtension. If you still want to use this class from GDScript, consider using a lower [member mix_rate] such as 11,025 Hz or 22,050 Hz.
</description>
<tutorials>
<link title="Audio Generator Demo">https://godotengine.org/asset-library/asset/2759</link>
</tutorials>
<members>
<member name="buffer_length" type="float" setter="set_buffer_length" getter="get_buffer_length" default="0.5">
The length of the buffer to generate (in seconds). Lower values result in less latency, but require the script to generate audio data faster, resulting in increased CPU usage and more risk for audio cracking if the CPU can't keep up.
</member>
<member name="mix_rate" type="float" setter="set_mix_rate" getter="get_mix_rate" default="44100.0">
The sample rate to use (in Hz). Higher values are more demanding for the CPU to generate, but result in better quality.
In games, common sample rates in use are [code]11025[/code], [code]16000[/code], [code]22050[/code], [code]32000[/code], [code]44100[/code], and [code]48000[/code].
According to the [url=https://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem]Nyquist-Shannon sampling theorem[/url], there is no quality difference to human hearing when going past 40,000 Hz (since most humans can only hear up to ~20,000 Hz, often less). If you are generating lower-pitched sounds such as voices, lower sample rates such as [code]32000[/code] or [code]22050[/code] may be usable with no loss in quality.
</member>
</members>
</class>