godot/modules/godot_physics_2d/godot_collision_solver_2d.cpp
Ricardo Buring 7c4c4b9987 Move Godot Physics 2D into a module; add dummy 2D physics server
If the module is enabled (default), 2D physics works as it did before.

If the module is disabled and no other 2D physics server is registered
(via a module or GDExtension), then we fall back to a dummy
implementation which effectively disables 2D physics functionality (and
a warning is printed).

The dummy 2D physics server can also be selected explicitly, in which
case no warning is printed.
2024-09-23 17:33:45 +02:00

274 lines
11 KiB
C++

/**************************************************************************/
/* godot_collision_solver_2d.cpp */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#include "godot_collision_solver_2d.h"
#include "godot_collision_solver_2d_sat.h"
#define collision_solver sat_2d_calculate_penetration
//#define collision_solver gjk_epa_calculate_penetration
bool GodotCollisionSolver2D::solve_static_world_boundary(const GodotShape2D *p_shape_A, const Transform2D &p_transform_A, const GodotShape2D *p_shape_B, const Transform2D &p_transform_B, const Vector2 &p_motion_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, real_t p_margin) {
const GodotWorldBoundaryShape2D *world_boundary = static_cast<const GodotWorldBoundaryShape2D *>(p_shape_A);
if (p_shape_B->get_type() == PhysicsServer2D::SHAPE_WORLD_BOUNDARY) {
return false;
}
Vector2 n = p_transform_A.basis_xform(world_boundary->get_normal()).normalized();
Vector2 p = p_transform_A.xform(world_boundary->get_normal() * world_boundary->get_d());
real_t d = n.dot(p);
Vector2 supports[2];
int support_count;
p_shape_B->get_supports(p_transform_B.affine_inverse().basis_xform(-n).normalized(), supports, support_count);
bool found = false;
for (int i = 0; i < support_count; i++) {
supports[i] += p_margin * supports[i].normalized();
supports[i] = p_transform_B.xform(supports[i]);
supports[i] += p_motion_B;
real_t pd = n.dot(supports[i]);
if (pd >= d) {
continue;
}
found = true;
Vector2 support_A = supports[i] - n * (pd - d);
if (p_result_callback) {
if (p_swap_result) {
p_result_callback(supports[i], support_A, p_userdata);
} else {
p_result_callback(support_A, supports[i], p_userdata);
}
}
}
return found;
}
bool GodotCollisionSolver2D::solve_separation_ray(const GodotShape2D *p_shape_A, const Vector2 &p_motion_A, const Transform2D &p_transform_A, const GodotShape2D *p_shape_B, const Transform2D &p_transform_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, Vector2 *r_sep_axis, real_t p_margin) {
const GodotSeparationRayShape2D *ray = static_cast<const GodotSeparationRayShape2D *>(p_shape_A);
if (p_shape_B->get_type() == PhysicsServer2D::SHAPE_SEPARATION_RAY) {
return false;
}
Vector2 from = p_transform_A.get_origin();
Vector2 to = from + p_transform_A[1] * (ray->get_length() + p_margin);
if (p_motion_A != Vector2()) {
//not the best but should be enough
Vector2 normal = (to - from).normalized();
to += normal * MAX(0.0, normal.dot(p_motion_A));
}
Vector2 support_A = to;
Transform2D invb = p_transform_B.affine_inverse();
from = invb.xform(from);
to = invb.xform(to);
Vector2 p, n;
if (!p_shape_B->intersect_segment(from, to, p, n)) {
if (r_sep_axis) {
*r_sep_axis = p_transform_A[1].normalized();
}
return false;
}
// Discard contacts when the ray is fully contained inside the shape.
if (n == Vector2()) {
if (r_sep_axis) {
*r_sep_axis = p_transform_A[1].normalized();
}
return false;
}
// Discard contacts in the wrong direction.
if (n.dot(from - to) < CMP_EPSILON) {
if (r_sep_axis) {
*r_sep_axis = p_transform_A[1].normalized();
}
return false;
}
Vector2 support_B = p_transform_B.xform(p);
if (ray->get_slide_on_slope()) {
Vector2 global_n = invb.basis_xform_inv(n).normalized();
support_B = support_A + (support_B - support_A).length() * global_n;
}
if (p_result_callback) {
if (p_swap_result) {
p_result_callback(support_B, support_A, p_userdata);
} else {
p_result_callback(support_A, support_B, p_userdata);
}
}
return true;
}
struct _ConcaveCollisionInfo2D {
const Transform2D *transform_A = nullptr;
const GodotShape2D *shape_A = nullptr;
const Transform2D *transform_B = nullptr;
Vector2 motion_A;
Vector2 motion_B;
real_t margin_A = 0.0;
real_t margin_B = 0.0;
GodotCollisionSolver2D::CallbackResult result_callback = nullptr;
void *userdata = nullptr;
bool swap_result = false;
bool collided = false;
int aabb_tests = 0;
int collisions = 0;
Vector2 *sep_axis = nullptr;
};
bool GodotCollisionSolver2D::concave_callback(void *p_userdata, GodotShape2D *p_convex) {
_ConcaveCollisionInfo2D &cinfo = *(static_cast<_ConcaveCollisionInfo2D *>(p_userdata));
cinfo.aabb_tests++;
bool collided = collision_solver(cinfo.shape_A, *cinfo.transform_A, cinfo.motion_A, p_convex, *cinfo.transform_B, cinfo.motion_B, cinfo.result_callback, cinfo.userdata, cinfo.swap_result, cinfo.sep_axis, cinfo.margin_A, cinfo.margin_B);
if (!collided) {
return false;
}
cinfo.collided = true;
cinfo.collisions++;
// Stop at first collision if contacts are not needed.
return !cinfo.result_callback;
}
bool GodotCollisionSolver2D::solve_concave(const GodotShape2D *p_shape_A, const Transform2D &p_transform_A, const Vector2 &p_motion_A, const GodotShape2D *p_shape_B, const Transform2D &p_transform_B, const Vector2 &p_motion_B, CallbackResult p_result_callback, void *p_userdata, bool p_swap_result, Vector2 *r_sep_axis, real_t p_margin_A, real_t p_margin_B) {
const GodotConcaveShape2D *concave_B = static_cast<const GodotConcaveShape2D *>(p_shape_B);
_ConcaveCollisionInfo2D cinfo;
cinfo.transform_A = &p_transform_A;
cinfo.shape_A = p_shape_A;
cinfo.transform_B = &p_transform_B;
cinfo.motion_A = p_motion_A;
cinfo.result_callback = p_result_callback;
cinfo.userdata = p_userdata;
cinfo.swap_result = p_swap_result;
cinfo.collided = false;
cinfo.collisions = 0;
cinfo.sep_axis = r_sep_axis;
cinfo.margin_A = p_margin_A;
cinfo.margin_B = p_margin_B;
cinfo.aabb_tests = 0;
Transform2D rel_transform = p_transform_A;
rel_transform.columns[2] -= p_transform_B.get_origin();
// Quickly compute a local Rect2.
Rect2 local_aabb;
for (int i = 0; i < 2; i++) {
Vector2 axis(p_transform_B.columns[i]);
real_t axis_scale = 1.0 / axis.length();
axis *= axis_scale;
real_t smin = 0.0, smax = 0.0;
p_shape_A->project_rangev(axis, rel_transform, smin, smax);
smin *= axis_scale;
smax *= axis_scale;
local_aabb.position[i] = smin;
local_aabb.size[i] = smax - smin;
}
// In case of motion, expand the Rect2 in the motion direction.
if (p_motion_A != Vector2()) {
Rect2 moved_aabb = local_aabb;
moved_aabb.position += p_motion_A;
local_aabb = local_aabb.merge(moved_aabb);
}
concave_B->cull(local_aabb, concave_callback, &cinfo);
return cinfo.collided;
}
bool GodotCollisionSolver2D::solve(const GodotShape2D *p_shape_A, const Transform2D &p_transform_A, const Vector2 &p_motion_A, const GodotShape2D *p_shape_B, const Transform2D &p_transform_B, const Vector2 &p_motion_B, CallbackResult p_result_callback, void *p_userdata, Vector2 *r_sep_axis, real_t p_margin_A, real_t p_margin_B) {
PhysicsServer2D::ShapeType type_A = p_shape_A->get_type();
PhysicsServer2D::ShapeType type_B = p_shape_B->get_type();
bool concave_A = p_shape_A->is_concave();
bool concave_B = p_shape_B->is_concave();
real_t margin_A = p_margin_A, margin_B = p_margin_B;
bool swap = false;
if (type_A > type_B) {
SWAP(type_A, type_B);
SWAP(concave_A, concave_B);
SWAP(margin_A, margin_B);
swap = true;
}
if (type_A == PhysicsServer2D::SHAPE_WORLD_BOUNDARY) {
if (type_B == PhysicsServer2D::SHAPE_WORLD_BOUNDARY) {
WARN_PRINT_ONCE("Collisions between world boundaries are not supported.");
return false;
}
if (swap) {
return solve_static_world_boundary(p_shape_B, p_transform_B, p_shape_A, p_transform_A, p_motion_A, p_result_callback, p_userdata, true, p_margin_A);
} else {
return solve_static_world_boundary(p_shape_A, p_transform_A, p_shape_B, p_transform_B, p_motion_B, p_result_callback, p_userdata, false, p_margin_B);
}
} else if (type_A == PhysicsServer2D::SHAPE_SEPARATION_RAY) {
if (type_B == PhysicsServer2D::SHAPE_SEPARATION_RAY) {
WARN_PRINT_ONCE("Collisions between two rays are not supported.");
return false; //no ray-ray
}
if (swap) {
return solve_separation_ray(p_shape_B, p_motion_B, p_transform_B, p_shape_A, p_transform_A, p_result_callback, p_userdata, true, r_sep_axis, p_margin_B);
} else {
return solve_separation_ray(p_shape_A, p_motion_A, p_transform_A, p_shape_B, p_transform_B, p_result_callback, p_userdata, false, r_sep_axis, p_margin_A);
}
} else if (concave_B) {
if (concave_A) {
WARN_PRINT_ONCE("Collisions between two concave shapes are not supported.");
return false;
}
if (!swap) {
return solve_concave(p_shape_A, p_transform_A, p_motion_A, p_shape_B, p_transform_B, p_motion_B, p_result_callback, p_userdata, false, r_sep_axis, margin_A, margin_B);
} else {
return solve_concave(p_shape_B, p_transform_B, p_motion_B, p_shape_A, p_transform_A, p_motion_A, p_result_callback, p_userdata, true, r_sep_axis, margin_A, margin_B);
}
} else {
return collision_solver(p_shape_A, p_transform_A, p_motion_A, p_shape_B, p_transform_B, p_motion_B, p_result_callback, p_userdata, false, r_sep_axis, margin_A, margin_B);
}
}