godot/modules/navigation/nav_utils.h

344 lines
9.4 KiB
C++

/**************************************************************************/
/* nav_utils.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef NAV_UTILS_H
#define NAV_UTILS_H
#include "core/math/vector3.h"
#include "core/templates/hash_map.h"
#include "core/templates/hashfuncs.h"
#include "core/templates/local_vector.h"
#include "servers/navigation/navigation_utilities.h"
struct NavBaseIteration;
namespace gd {
struct Polygon;
union PointKey {
struct {
int64_t x : 21;
int64_t y : 22;
int64_t z : 21;
};
uint64_t key = 0;
};
struct EdgeKey {
PointKey a;
PointKey b;
static uint32_t hash(const EdgeKey &p_val) {
return hash_one_uint64(p_val.a.key) ^ hash_one_uint64(p_val.b.key);
}
bool operator==(const EdgeKey &p_key) const {
return (a.key == p_key.a.key) && (b.key == p_key.b.key);
}
EdgeKey(const PointKey &p_a = PointKey(), const PointKey &p_b = PointKey()) :
a(p_a),
b(p_b) {
if (a.key > b.key) {
SWAP(a, b);
}
}
};
struct Point {
Vector3 pos;
PointKey key;
};
struct Edge {
/// The gateway in the edge, as, in some case, the whole edge might not be navigable.
struct Connection {
/// Polygon that this connection leads to.
Polygon *polygon = nullptr;
/// Edge of the source polygon where this connection starts from.
int edge = -1;
/// Point on the edge where the gateway leading to the poly starts.
Vector3 pathway_start;
/// Point on the edge where the gateway leading to the poly ends.
Vector3 pathway_end;
};
/// Connections from this edge to other polygons.
LocalVector<Connection> connections;
};
struct Polygon {
/// Id of the polygon in the map.
uint32_t id = UINT32_MAX;
/// Navigation region or link that contains this polygon.
const NavBaseIteration *owner = nullptr;
/// The points of this `Polygon`
LocalVector<Point> points;
/// The edges of this `Polygon`
LocalVector<Edge> edges;
real_t surface_area = 0.0;
};
struct NavigationPoly {
/// This poly.
const Polygon *poly = nullptr;
/// Index in the heap of traversable polygons.
uint32_t traversable_poly_index = UINT32_MAX;
/// Those 4 variables are used to travel the path backwards.
int back_navigation_poly_id = -1;
int back_navigation_edge = -1;
Vector3 back_navigation_edge_pathway_start;
Vector3 back_navigation_edge_pathway_end;
/// The entry position of this poly.
Vector3 entry;
/// The distance traveled until now (g cost).
real_t traveled_distance = 0.0;
/// The distance to the destination (h cost).
real_t distance_to_destination = 0.0;
/// The total travel cost (f cost).
real_t total_travel_cost() const {
return traveled_distance + distance_to_destination;
}
bool operator==(const NavigationPoly &p_other) const {
return poly == p_other.poly;
}
bool operator!=(const NavigationPoly &p_other) const {
return !(*this == p_other);
}
void reset() {
poly = nullptr;
traversable_poly_index = UINT32_MAX;
back_navigation_poly_id = -1;
back_navigation_edge = -1;
traveled_distance = FLT_MAX;
distance_to_destination = 0.0;
}
};
struct NavPolyTravelCostGreaterThan {
// Returns `true` if the travel cost of `a` is higher than that of `b`.
bool operator()(const NavigationPoly *p_poly_a, const NavigationPoly *p_poly_b) const {
real_t f_cost_a = p_poly_a->total_travel_cost();
real_t h_cost_a = p_poly_a->distance_to_destination;
real_t f_cost_b = p_poly_b->total_travel_cost();
real_t h_cost_b = p_poly_b->distance_to_destination;
if (f_cost_a != f_cost_b) {
return f_cost_a > f_cost_b;
} else {
return h_cost_a > h_cost_b;
}
}
};
struct NavPolyHeapIndexer {
void operator()(NavigationPoly *p_poly, uint32_t p_heap_index) const {
p_poly->traversable_poly_index = p_heap_index;
}
};
struct ClosestPointQueryResult {
Vector3 point;
Vector3 normal;
RID owner;
};
template <typename T>
struct NoopIndexer {
void operator()(const T &p_value, uint32_t p_index) {}
};
/**
* A max-heap implementation that notifies of element index changes.
*/
template <typename T, typename LessThan = Comparator<T>, typename Indexer = NoopIndexer<T>>
class Heap {
LocalVector<T> _buffer;
LessThan _less_than;
Indexer _indexer;
public:
static constexpr uint32_t INVALID_INDEX = UINT32_MAX;
void reserve(uint32_t p_size) {
_buffer.reserve(p_size);
}
uint32_t size() const {
return _buffer.size();
}
bool is_empty() const {
return _buffer.is_empty();
}
void push(const T &p_element) {
_buffer.push_back(p_element);
_indexer(p_element, _buffer.size() - 1);
_shift_up(_buffer.size() - 1);
}
T pop() {
ERR_FAIL_COND_V_MSG(_buffer.is_empty(), T(), "Can't pop an empty heap.");
T value = _buffer[0];
_indexer(value, INVALID_INDEX);
if (_buffer.size() > 1) {
_buffer[0] = _buffer[_buffer.size() - 1];
_indexer(_buffer[0], 0);
_buffer.remove_at(_buffer.size() - 1);
_shift_down(0);
} else {
_buffer.remove_at(_buffer.size() - 1);
}
return value;
}
/**
* Update the position of the element in the heap if necessary.
*/
void shift(uint32_t p_index) {
ERR_FAIL_UNSIGNED_INDEX_MSG(p_index, _buffer.size(), "Heap element index is out of range.");
if (!_shift_up(p_index)) {
_shift_down(p_index);
}
}
void clear() {
for (const T &value : _buffer) {
_indexer(value, INVALID_INDEX);
}
_buffer.clear();
}
Heap() {}
Heap(const LessThan &p_less_than) :
_less_than(p_less_than) {}
Heap(const Indexer &p_indexer) :
_indexer(p_indexer) {}
Heap(const LessThan &p_less_than, const Indexer &p_indexer) :
_less_than(p_less_than), _indexer(p_indexer) {}
private:
bool _shift_up(uint32_t p_index) {
T value = _buffer[p_index];
uint32_t current_index = p_index;
uint32_t parent_index = (current_index - 1) / 2;
while (current_index > 0 && _less_than(_buffer[parent_index], value)) {
_buffer[current_index] = _buffer[parent_index];
_indexer(_buffer[current_index], current_index);
current_index = parent_index;
parent_index = (current_index - 1) / 2;
}
if (current_index != p_index) {
_buffer[current_index] = value;
_indexer(value, current_index);
return true;
} else {
return false;
}
}
bool _shift_down(uint32_t p_index) {
T value = _buffer[p_index];
uint32_t current_index = p_index;
uint32_t child_index = 2 * current_index + 1;
while (child_index < _buffer.size()) {
if (child_index + 1 < _buffer.size() &&
_less_than(_buffer[child_index], _buffer[child_index + 1])) {
child_index++;
}
if (_less_than(_buffer[child_index], value)) {
break;
}
_buffer[current_index] = _buffer[child_index];
_indexer(_buffer[current_index], current_index);
current_index = child_index;
child_index = 2 * current_index + 1;
}
if (current_index != p_index) {
_buffer[current_index] = value;
_indexer(value, current_index);
return true;
} else {
return false;
}
}
};
struct EdgeConnectionPair {
gd::Edge::Connection connections[2];
int size = 0;
};
struct PerformanceData {
int pm_region_count = 0;
int pm_agent_count = 0;
int pm_link_count = 0;
int pm_polygon_count = 0;
int pm_edge_count = 0;
int pm_edge_merge_count = 0;
int pm_edge_connection_count = 0;
int pm_edge_free_count = 0;
int pm_obstacle_count = 0;
void reset() {
pm_region_count = 0;
pm_agent_count = 0;
pm_link_count = 0;
pm_polygon_count = 0;
pm_edge_count = 0;
pm_edge_merge_count = 0;
pm_edge_connection_count = 0;
pm_edge_free_count = 0;
pm_obstacle_count = 0;
}
};
} // namespace gd
#endif // NAV_UTILS_H