mirror of
https://github.com/godotengine/godot.git
synced 2025-01-23 11:03:13 -05:00
3685 lines
93 KiB
C++
3685 lines
93 KiB
C++
// basisu_enc.cpp
|
|
// Copyright (C) 2019-2024 Binomial LLC. All Rights Reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
#include "basisu_enc.h"
|
|
#include "basisu_resampler.h"
|
|
#include "basisu_resampler_filters.h"
|
|
#include "basisu_etc.h"
|
|
#include "../transcoder/basisu_transcoder.h"
|
|
#include "basisu_bc7enc.h"
|
|
#include "jpgd.h"
|
|
#include "pvpngreader.h"
|
|
#include "basisu_opencl.h"
|
|
#include "basisu_astc_hdr_enc.h"
|
|
#include <vector>
|
|
|
|
#ifndef TINYEXR_USE_ZFP
|
|
#define TINYEXR_USE_ZFP (1)
|
|
#endif
|
|
#include <tinyexr.h>
|
|
|
|
#ifndef MINIZ_HEADER_FILE_ONLY
|
|
#define MINIZ_HEADER_FILE_ONLY
|
|
#endif
|
|
#ifndef MINIZ_NO_ZLIB_COMPATIBLE_NAMES
|
|
#define MINIZ_NO_ZLIB_COMPATIBLE_NAMES
|
|
#endif
|
|
#include "basisu_miniz.h"
|
|
|
|
#if defined(_WIN32)
|
|
// For QueryPerformanceCounter/QueryPerformanceFrequency
|
|
#define WIN32_LEAN_AND_MEAN
|
|
#include <windows.h>
|
|
#endif
|
|
|
|
namespace basisu
|
|
{
|
|
uint64_t interval_timer::g_init_ticks, interval_timer::g_freq;
|
|
double interval_timer::g_timer_freq;
|
|
#if BASISU_SUPPORT_SSE
|
|
bool g_cpu_supports_sse41;
|
|
#endif
|
|
|
|
uint8_t g_hamming_dist[256] =
|
|
{
|
|
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
|
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
|
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
|
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
|
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
|
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
|
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
|
|
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
|
|
1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
|
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
|
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
|
|
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
|
|
2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
|
|
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
|
|
3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
|
|
4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8
|
|
};
|
|
|
|
// This is a Public Domain 8x8 font from here:
|
|
// https://github.com/dhepper/font8x8/blob/master/font8x8_basic.h
|
|
const uint8_t g_debug_font8x8_basic[127 - 32 + 1][8] =
|
|
{
|
|
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // U+0020 ( )
|
|
{ 0x18, 0x3C, 0x3C, 0x18, 0x18, 0x00, 0x18, 0x00}, // U+0021 (!)
|
|
{ 0x36, 0x36, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // U+0022 (")
|
|
{ 0x36, 0x36, 0x7F, 0x36, 0x7F, 0x36, 0x36, 0x00}, // U+0023 (#)
|
|
{ 0x0C, 0x3E, 0x03, 0x1E, 0x30, 0x1F, 0x0C, 0x00}, // U+0024 ($)
|
|
{ 0x00, 0x63, 0x33, 0x18, 0x0C, 0x66, 0x63, 0x00}, // U+0025 (%)
|
|
{ 0x1C, 0x36, 0x1C, 0x6E, 0x3B, 0x33, 0x6E, 0x00}, // U+0026 (&)
|
|
{ 0x06, 0x06, 0x03, 0x00, 0x00, 0x00, 0x00, 0x00}, // U+0027 (')
|
|
{ 0x18, 0x0C, 0x06, 0x06, 0x06, 0x0C, 0x18, 0x00}, // U+0028 (()
|
|
{ 0x06, 0x0C, 0x18, 0x18, 0x18, 0x0C, 0x06, 0x00}, // U+0029 ())
|
|
{ 0x00, 0x66, 0x3C, 0xFF, 0x3C, 0x66, 0x00, 0x00}, // U+002A (*)
|
|
{ 0x00, 0x0C, 0x0C, 0x3F, 0x0C, 0x0C, 0x00, 0x00}, // U+002B (+)
|
|
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x0C, 0x06}, // U+002C (,)
|
|
{ 0x00, 0x00, 0x00, 0x3F, 0x00, 0x00, 0x00, 0x00}, // U+002D (-)
|
|
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x0C, 0x0C, 0x00}, // U+002E (.)
|
|
{ 0x60, 0x30, 0x18, 0x0C, 0x06, 0x03, 0x01, 0x00}, // U+002F (/)
|
|
{ 0x3E, 0x63, 0x73, 0x7B, 0x6F, 0x67, 0x3E, 0x00}, // U+0030 (0)
|
|
{ 0x0C, 0x0E, 0x0C, 0x0C, 0x0C, 0x0C, 0x3F, 0x00}, // U+0031 (1)
|
|
{ 0x1E, 0x33, 0x30, 0x1C, 0x06, 0x33, 0x3F, 0x00}, // U+0032 (2)
|
|
{ 0x1E, 0x33, 0x30, 0x1C, 0x30, 0x33, 0x1E, 0x00}, // U+0033 (3)
|
|
{ 0x38, 0x3C, 0x36, 0x33, 0x7F, 0x30, 0x78, 0x00}, // U+0034 (4)
|
|
{ 0x3F, 0x03, 0x1F, 0x30, 0x30, 0x33, 0x1E, 0x00}, // U+0035 (5)
|
|
{ 0x1C, 0x06, 0x03, 0x1F, 0x33, 0x33, 0x1E, 0x00}, // U+0036 (6)
|
|
{ 0x3F, 0x33, 0x30, 0x18, 0x0C, 0x0C, 0x0C, 0x00}, // U+0037 (7)
|
|
{ 0x1E, 0x33, 0x33, 0x1E, 0x33, 0x33, 0x1E, 0x00}, // U+0038 (8)
|
|
{ 0x1E, 0x33, 0x33, 0x3E, 0x30, 0x18, 0x0E, 0x00}, // U+0039 (9)
|
|
{ 0x00, 0x0C, 0x0C, 0x00, 0x00, 0x0C, 0x0C, 0x00}, // U+003A (:)
|
|
{ 0x00, 0x0C, 0x0C, 0x00, 0x00, 0x0C, 0x0C, 0x06}, // U+003B (;)
|
|
{ 0x18, 0x0C, 0x06, 0x03, 0x06, 0x0C, 0x18, 0x00}, // U+003C (<)
|
|
{ 0x00, 0x00, 0x3F, 0x00, 0x00, 0x3F, 0x00, 0x00}, // U+003D (=)
|
|
{ 0x06, 0x0C, 0x18, 0x30, 0x18, 0x0C, 0x06, 0x00}, // U+003E (>)
|
|
{ 0x1E, 0x33, 0x30, 0x18, 0x0C, 0x00, 0x0C, 0x00}, // U+003F (?)
|
|
{ 0x3E, 0x63, 0x7B, 0x7B, 0x7B, 0x03, 0x1E, 0x00}, // U+0040 (@)
|
|
{ 0x0C, 0x1E, 0x33, 0x33, 0x3F, 0x33, 0x33, 0x00}, // U+0041 (A)
|
|
{ 0x3F, 0x66, 0x66, 0x3E, 0x66, 0x66, 0x3F, 0x00}, // U+0042 (B)
|
|
{ 0x3C, 0x66, 0x03, 0x03, 0x03, 0x66, 0x3C, 0x00}, // U+0043 (C)
|
|
{ 0x1F, 0x36, 0x66, 0x66, 0x66, 0x36, 0x1F, 0x00}, // U+0044 (D)
|
|
{ 0x7F, 0x46, 0x16, 0x1E, 0x16, 0x46, 0x7F, 0x00}, // U+0045 (E)
|
|
{ 0x7F, 0x46, 0x16, 0x1E, 0x16, 0x06, 0x0F, 0x00}, // U+0046 (F)
|
|
{ 0x3C, 0x66, 0x03, 0x03, 0x73, 0x66, 0x7C, 0x00}, // U+0047 (G)
|
|
{ 0x33, 0x33, 0x33, 0x3F, 0x33, 0x33, 0x33, 0x00}, // U+0048 (H)
|
|
{ 0x1E, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x1E, 0x00}, // U+0049 (I)
|
|
{ 0x78, 0x30, 0x30, 0x30, 0x33, 0x33, 0x1E, 0x00}, // U+004A (J)
|
|
{ 0x67, 0x66, 0x36, 0x1E, 0x36, 0x66, 0x67, 0x00}, // U+004B (K)
|
|
{ 0x0F, 0x06, 0x06, 0x06, 0x46, 0x66, 0x7F, 0x00}, // U+004C (L)
|
|
{ 0x63, 0x77, 0x7F, 0x7F, 0x6B, 0x63, 0x63, 0x00}, // U+004D (M)
|
|
{ 0x63, 0x67, 0x6F, 0x7B, 0x73, 0x63, 0x63, 0x00}, // U+004E (N)
|
|
{ 0x1C, 0x36, 0x63, 0x63, 0x63, 0x36, 0x1C, 0x00}, // U+004F (O)
|
|
{ 0x3F, 0x66, 0x66, 0x3E, 0x06, 0x06, 0x0F, 0x00}, // U+0050 (P)
|
|
{ 0x1E, 0x33, 0x33, 0x33, 0x3B, 0x1E, 0x38, 0x00}, // U+0051 (Q)
|
|
{ 0x3F, 0x66, 0x66, 0x3E, 0x36, 0x66, 0x67, 0x00}, // U+0052 (R)
|
|
{ 0x1E, 0x33, 0x07, 0x0E, 0x38, 0x33, 0x1E, 0x00}, // U+0053 (S)
|
|
{ 0x3F, 0x2D, 0x0C, 0x0C, 0x0C, 0x0C, 0x1E, 0x00}, // U+0054 (T)
|
|
{ 0x33, 0x33, 0x33, 0x33, 0x33, 0x33, 0x3F, 0x00}, // U+0055 (U)
|
|
{ 0x33, 0x33, 0x33, 0x33, 0x33, 0x1E, 0x0C, 0x00}, // U+0056 (V)
|
|
{ 0x63, 0x63, 0x63, 0x6B, 0x7F, 0x77, 0x63, 0x00}, // U+0057 (W)
|
|
{ 0x63, 0x63, 0x36, 0x1C, 0x1C, 0x36, 0x63, 0x00}, // U+0058 (X)
|
|
{ 0x33, 0x33, 0x33, 0x1E, 0x0C, 0x0C, 0x1E, 0x00}, // U+0059 (Y)
|
|
{ 0x7F, 0x63, 0x31, 0x18, 0x4C, 0x66, 0x7F, 0x00}, // U+005A (Z)
|
|
{ 0x1E, 0x06, 0x06, 0x06, 0x06, 0x06, 0x1E, 0x00}, // U+005B ([)
|
|
{ 0x03, 0x06, 0x0C, 0x18, 0x30, 0x60, 0x40, 0x00}, // U+005C (\)
|
|
{ 0x1E, 0x18, 0x18, 0x18, 0x18, 0x18, 0x1E, 0x00}, // U+005D (])
|
|
{ 0x08, 0x1C, 0x36, 0x63, 0x00, 0x00, 0x00, 0x00}, // U+005E (^)
|
|
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF}, // U+005F (_)
|
|
{ 0x0C, 0x0C, 0x18, 0x00, 0x00, 0x00, 0x00, 0x00}, // U+0060 (`)
|
|
{ 0x00, 0x00, 0x1E, 0x30, 0x3E, 0x33, 0x6E, 0x00}, // U+0061 (a)
|
|
{ 0x07, 0x06, 0x06, 0x3E, 0x66, 0x66, 0x3B, 0x00}, // U+0062 (b)
|
|
{ 0x00, 0x00, 0x1E, 0x33, 0x03, 0x33, 0x1E, 0x00}, // U+0063 (c)
|
|
{ 0x38, 0x30, 0x30, 0x3e, 0x33, 0x33, 0x6E, 0x00}, // U+0064 (d)
|
|
{ 0x00, 0x00, 0x1E, 0x33, 0x3f, 0x03, 0x1E, 0x00}, // U+0065 (e)
|
|
{ 0x1C, 0x36, 0x06, 0x0f, 0x06, 0x06, 0x0F, 0x00}, // U+0066 (f)
|
|
{ 0x00, 0x00, 0x6E, 0x33, 0x33, 0x3E, 0x30, 0x1F}, // U+0067 (g)
|
|
{ 0x07, 0x06, 0x36, 0x6E, 0x66, 0x66, 0x67, 0x00}, // U+0068 (h)
|
|
{ 0x0C, 0x00, 0x0E, 0x0C, 0x0C, 0x0C, 0x1E, 0x00}, // U+0069 (i)
|
|
{ 0x30, 0x00, 0x30, 0x30, 0x30, 0x33, 0x33, 0x1E}, // U+006A (j)
|
|
{ 0x07, 0x06, 0x66, 0x36, 0x1E, 0x36, 0x67, 0x00}, // U+006B (k)
|
|
{ 0x0E, 0x0C, 0x0C, 0x0C, 0x0C, 0x0C, 0x1E, 0x00}, // U+006C (l)
|
|
{ 0x00, 0x00, 0x33, 0x7F, 0x7F, 0x6B, 0x63, 0x00}, // U+006D (m)
|
|
{ 0x00, 0x00, 0x1F, 0x33, 0x33, 0x33, 0x33, 0x00}, // U+006E (n)
|
|
{ 0x00, 0x00, 0x1E, 0x33, 0x33, 0x33, 0x1E, 0x00}, // U+006F (o)
|
|
{ 0x00, 0x00, 0x3B, 0x66, 0x66, 0x3E, 0x06, 0x0F}, // U+0070 (p)
|
|
{ 0x00, 0x00, 0x6E, 0x33, 0x33, 0x3E, 0x30, 0x78}, // U+0071 (q)
|
|
{ 0x00, 0x00, 0x3B, 0x6E, 0x66, 0x06, 0x0F, 0x00}, // U+0072 (r)
|
|
{ 0x00, 0x00, 0x3E, 0x03, 0x1E, 0x30, 0x1F, 0x00}, // U+0073 (s)
|
|
{ 0x08, 0x0C, 0x3E, 0x0C, 0x0C, 0x2C, 0x18, 0x00}, // U+0074 (t)
|
|
{ 0x00, 0x00, 0x33, 0x33, 0x33, 0x33, 0x6E, 0x00}, // U+0075 (u)
|
|
{ 0x00, 0x00, 0x33, 0x33, 0x33, 0x1E, 0x0C, 0x00}, // U+0076 (v)
|
|
{ 0x00, 0x00, 0x63, 0x6B, 0x7F, 0x7F, 0x36, 0x00}, // U+0077 (w)
|
|
{ 0x00, 0x00, 0x63, 0x36, 0x1C, 0x36, 0x63, 0x00}, // U+0078 (x)
|
|
{ 0x00, 0x00, 0x33, 0x33, 0x33, 0x3E, 0x30, 0x1F}, // U+0079 (y)
|
|
{ 0x00, 0x00, 0x3F, 0x19, 0x0C, 0x26, 0x3F, 0x00}, // U+007A (z)
|
|
{ 0x38, 0x0C, 0x0C, 0x07, 0x0C, 0x0C, 0x38, 0x00}, // U+007B ({)
|
|
{ 0x18, 0x18, 0x18, 0x00, 0x18, 0x18, 0x18, 0x00}, // U+007C (|)
|
|
{ 0x07, 0x0C, 0x0C, 0x38, 0x0C, 0x0C, 0x07, 0x00}, // U+007D (})
|
|
{ 0x6E, 0x3B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00}, // U+007E (~)
|
|
{ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00} // U+007F
|
|
};
|
|
|
|
bool g_library_initialized;
|
|
std::mutex g_encoder_init_mutex;
|
|
|
|
// Encoder library initialization (just call once at startup)
|
|
bool basisu_encoder_init(bool use_opencl, bool opencl_force_serialization)
|
|
{
|
|
std::lock_guard<std::mutex> lock(g_encoder_init_mutex);
|
|
|
|
if (g_library_initialized)
|
|
return true;
|
|
|
|
detect_sse41();
|
|
|
|
basist::basisu_transcoder_init();
|
|
pack_etc1_solid_color_init();
|
|
//uastc_init();
|
|
bc7enc_compress_block_init(); // must be after uastc_init()
|
|
|
|
// Don't bother initializing the OpenCL module at all if it's been completely disabled.
|
|
if (use_opencl)
|
|
{
|
|
opencl_init(opencl_force_serialization);
|
|
}
|
|
|
|
interval_timer::init(); // make sure interval_timer globals are initialized from main thread to avoid TSAN reports
|
|
|
|
astc_hdr_enc_init();
|
|
basist::bc6h_enc_init();
|
|
|
|
g_library_initialized = true;
|
|
return true;
|
|
}
|
|
|
|
void basisu_encoder_deinit()
|
|
{
|
|
opencl_deinit();
|
|
|
|
g_library_initialized = false;
|
|
}
|
|
|
|
void error_vprintf(const char* pFmt, va_list args)
|
|
{
|
|
char buf[8192];
|
|
|
|
#ifdef _WIN32
|
|
vsprintf_s(buf, sizeof(buf), pFmt, args);
|
|
#else
|
|
vsnprintf(buf, sizeof(buf), pFmt, args);
|
|
#endif
|
|
|
|
fprintf(stderr, "ERROR: %s", buf);
|
|
}
|
|
|
|
void error_printf(const char *pFmt, ...)
|
|
{
|
|
va_list args;
|
|
va_start(args, pFmt);
|
|
error_vprintf(pFmt, args);
|
|
va_end(args);
|
|
}
|
|
|
|
#if defined(_WIN32)
|
|
inline void query_counter(timer_ticks* pTicks)
|
|
{
|
|
QueryPerformanceCounter(reinterpret_cast<LARGE_INTEGER*>(pTicks));
|
|
}
|
|
inline void query_counter_frequency(timer_ticks* pTicks)
|
|
{
|
|
QueryPerformanceFrequency(reinterpret_cast<LARGE_INTEGER*>(pTicks));
|
|
}
|
|
#elif defined(__APPLE__) || defined(__FreeBSD__) || defined(__OpenBSD__) || defined(__EMSCRIPTEN__)
|
|
#include <sys/time.h>
|
|
inline void query_counter(timer_ticks* pTicks)
|
|
{
|
|
struct timeval cur_time;
|
|
gettimeofday(&cur_time, NULL);
|
|
*pTicks = static_cast<unsigned long long>(cur_time.tv_sec) * 1000000ULL + static_cast<unsigned long long>(cur_time.tv_usec);
|
|
}
|
|
inline void query_counter_frequency(timer_ticks* pTicks)
|
|
{
|
|
*pTicks = 1000000;
|
|
}
|
|
#elif defined(__GNUC__)
|
|
#include <sys/timex.h>
|
|
inline void query_counter(timer_ticks* pTicks)
|
|
{
|
|
struct timeval cur_time;
|
|
gettimeofday(&cur_time, NULL);
|
|
*pTicks = static_cast<unsigned long long>(cur_time.tv_sec) * 1000000ULL + static_cast<unsigned long long>(cur_time.tv_usec);
|
|
}
|
|
inline void query_counter_frequency(timer_ticks* pTicks)
|
|
{
|
|
*pTicks = 1000000;
|
|
}
|
|
#else
|
|
#error TODO
|
|
#endif
|
|
|
|
interval_timer::interval_timer() : m_start_time(0), m_stop_time(0), m_started(false), m_stopped(false)
|
|
{
|
|
if (!g_timer_freq)
|
|
init();
|
|
}
|
|
|
|
void interval_timer::start()
|
|
{
|
|
query_counter(&m_start_time);
|
|
m_started = true;
|
|
m_stopped = false;
|
|
}
|
|
|
|
void interval_timer::stop()
|
|
{
|
|
assert(m_started);
|
|
query_counter(&m_stop_time);
|
|
m_stopped = true;
|
|
}
|
|
|
|
double interval_timer::get_elapsed_secs() const
|
|
{
|
|
assert(m_started);
|
|
if (!m_started)
|
|
return 0;
|
|
|
|
timer_ticks stop_time = m_stop_time;
|
|
if (!m_stopped)
|
|
query_counter(&stop_time);
|
|
|
|
timer_ticks delta = stop_time - m_start_time;
|
|
return delta * g_timer_freq;
|
|
}
|
|
|
|
void interval_timer::init()
|
|
{
|
|
if (!g_timer_freq)
|
|
{
|
|
query_counter_frequency(&g_freq);
|
|
g_timer_freq = 1.0f / g_freq;
|
|
query_counter(&g_init_ticks);
|
|
}
|
|
}
|
|
|
|
timer_ticks interval_timer::get_ticks()
|
|
{
|
|
if (!g_timer_freq)
|
|
init();
|
|
timer_ticks ticks;
|
|
query_counter(&ticks);
|
|
return ticks - g_init_ticks;
|
|
}
|
|
|
|
double interval_timer::ticks_to_secs(timer_ticks ticks)
|
|
{
|
|
if (!g_timer_freq)
|
|
init();
|
|
return ticks * g_timer_freq;
|
|
}
|
|
|
|
float linear_to_srgb(float l)
|
|
{
|
|
assert(l >= 0.0f && l <= 1.0f);
|
|
if (l < .0031308f)
|
|
return saturate(l * 12.92f);
|
|
else
|
|
return saturate(1.055f * powf(l, 1.0f / 2.4f) - .055f);
|
|
}
|
|
|
|
float srgb_to_linear(float s)
|
|
{
|
|
assert(s >= 0.0f && s <= 1.0f);
|
|
if (s < .04045f)
|
|
return saturate(s * (1.0f / 12.92f));
|
|
else
|
|
return saturate(powf((s + .055f) * (1.0f / 1.055f), 2.4f));
|
|
}
|
|
|
|
const uint32_t MAX_32BIT_ALLOC_SIZE = 250000000;
|
|
|
|
bool load_tga(const char* pFilename, image& img)
|
|
{
|
|
int w = 0, h = 0, n_chans = 0;
|
|
uint8_t* pImage_data = read_tga(pFilename, w, h, n_chans);
|
|
|
|
if ((!pImage_data) || (!w) || (!h) || ((n_chans != 3) && (n_chans != 4)))
|
|
{
|
|
error_printf("Failed loading .TGA image \"%s\"!\n", pFilename);
|
|
|
|
if (pImage_data)
|
|
free(pImage_data);
|
|
|
|
return false;
|
|
}
|
|
|
|
if (sizeof(void *) == sizeof(uint32_t))
|
|
{
|
|
if (((uint64_t)w * h * n_chans) > MAX_32BIT_ALLOC_SIZE)
|
|
{
|
|
error_printf("Image \"%s\" is too large (%ux%u) to process in a 32-bit build!\n", pFilename, w, h);
|
|
|
|
if (pImage_data)
|
|
free(pImage_data);
|
|
|
|
return false;
|
|
}
|
|
}
|
|
|
|
img.resize(w, h);
|
|
|
|
const uint8_t *pSrc = pImage_data;
|
|
for (int y = 0; y < h; y++)
|
|
{
|
|
color_rgba *pDst = &img(0, y);
|
|
|
|
for (int x = 0; x < w; x++)
|
|
{
|
|
pDst->r = pSrc[0];
|
|
pDst->g = pSrc[1];
|
|
pDst->b = pSrc[2];
|
|
pDst->a = (n_chans == 3) ? 255 : pSrc[3];
|
|
|
|
pSrc += n_chans;
|
|
++pDst;
|
|
}
|
|
}
|
|
|
|
free(pImage_data);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool load_qoi(const char* pFilename, image& img)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
bool load_png(const uint8_t *pBuf, size_t buf_size, image &img, const char *pFilename)
|
|
{
|
|
interval_timer tm;
|
|
tm.start();
|
|
|
|
if (!buf_size)
|
|
return false;
|
|
|
|
uint32_t width = 0, height = 0, num_chans = 0;
|
|
void* pImage = pv_png::load_png(pBuf, buf_size, 4, width, height, num_chans);
|
|
if (!pBuf)
|
|
{
|
|
error_printf("pv_png::load_png failed while loading image \"%s\"\n", pFilename);
|
|
return false;
|
|
}
|
|
|
|
img.grant_ownership(reinterpret_cast<color_rgba*>(pImage), width, height);
|
|
|
|
//debug_printf("Total load_png() time: %3.3f secs\n", tm.get_elapsed_secs());
|
|
|
|
return true;
|
|
}
|
|
|
|
bool load_png(const char* pFilename, image& img)
|
|
{
|
|
uint8_vec buffer;
|
|
if (!read_file_to_vec(pFilename, buffer))
|
|
{
|
|
error_printf("load_png: Failed reading file \"%s\"!\n", pFilename);
|
|
return false;
|
|
}
|
|
|
|
return load_png(buffer.data(), buffer.size(), img, pFilename);
|
|
}
|
|
|
|
bool load_jpg(const char *pFilename, image& img)
|
|
{
|
|
int width = 0, height = 0, actual_comps = 0;
|
|
uint8_t *pImage_data = jpgd::decompress_jpeg_image_from_file(pFilename, &width, &height, &actual_comps, 4, jpgd::jpeg_decoder::cFlagBoxChromaFiltering);
|
|
if (!pImage_data)
|
|
return false;
|
|
|
|
img.init(pImage_data, width, height, 4);
|
|
|
|
free(pImage_data);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool load_image(const char* pFilename, image& img)
|
|
{
|
|
std::string ext(string_get_extension(std::string(pFilename)));
|
|
|
|
if (ext.length() == 0)
|
|
return false;
|
|
|
|
const char *pExt = ext.c_str();
|
|
|
|
if (strcasecmp(pExt, "png") == 0)
|
|
return load_png(pFilename, img);
|
|
if (strcasecmp(pExt, "tga") == 0)
|
|
return load_tga(pFilename, img);
|
|
if (strcasecmp(pExt, "qoi") == 0)
|
|
return load_qoi(pFilename, img);
|
|
if ( (strcasecmp(pExt, "jpg") == 0) || (strcasecmp(pExt, "jfif") == 0) || (strcasecmp(pExt, "jpeg") == 0) )
|
|
return load_jpg(pFilename, img);
|
|
|
|
return false;
|
|
}
|
|
|
|
static void convert_ldr_to_hdr_image(imagef &img, const image &ldr_img, bool ldr_srgb_to_linear)
|
|
{
|
|
img.resize(ldr_img.get_width(), ldr_img.get_height());
|
|
|
|
for (uint32_t y = 0; y < ldr_img.get_height(); y++)
|
|
{
|
|
for (uint32_t x = 0; x < ldr_img.get_width(); x++)
|
|
{
|
|
const color_rgba& c = ldr_img(x, y);
|
|
|
|
vec4F& d = img(x, y);
|
|
if (ldr_srgb_to_linear)
|
|
{
|
|
// TODO: Multiply by 100-200 nits?
|
|
d[0] = srgb_to_linear(c[0] * (1.0f / 255.0f));
|
|
d[1] = srgb_to_linear(c[1] * (1.0f / 255.0f));
|
|
d[2] = srgb_to_linear(c[2] * (1.0f / 255.0f));
|
|
}
|
|
else
|
|
{
|
|
d[0] = c[0] * (1.0f / 255.0f);
|
|
d[1] = c[1] * (1.0f / 255.0f);
|
|
d[2] = c[2] * (1.0f / 255.0f);
|
|
}
|
|
d[3] = c[3] * (1.0f / 255.0f);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool load_image_hdr(const void* pMem, size_t mem_size, imagef& img, uint32_t width, uint32_t height, hdr_image_type img_type, bool ldr_srgb_to_linear)
|
|
{
|
|
if ((!pMem) || (!mem_size))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
switch (img_type)
|
|
{
|
|
case hdr_image_type::cHITRGBAHalfFloat:
|
|
{
|
|
if (mem_size != width * height * sizeof(basist::half_float) * 4)
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
if ((!width) || (!height))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
const basist::half_float* pSrc_image_h = static_cast<const basist::half_float *>(pMem);
|
|
|
|
img.resize(width, height);
|
|
for (uint32_t y = 0; y < height; y++)
|
|
{
|
|
for (uint32_t x = 0; x < width; x++)
|
|
{
|
|
const basist::half_float* pSrc_pixel = &pSrc_image_h[x * 4];
|
|
|
|
vec4F& dst = img(x, y);
|
|
dst[0] = basist::half_to_float(pSrc_pixel[0]);
|
|
dst[1] = basist::half_to_float(pSrc_pixel[1]);
|
|
dst[2] = basist::half_to_float(pSrc_pixel[2]);
|
|
dst[3] = basist::half_to_float(pSrc_pixel[3]);
|
|
}
|
|
|
|
pSrc_image_h += (width * 4);
|
|
}
|
|
|
|
break;
|
|
}
|
|
case hdr_image_type::cHITRGBAFloat:
|
|
{
|
|
if (mem_size != width * height * sizeof(float) * 4)
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
if ((!width) || (!height))
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
img.resize(width, height);
|
|
memcpy(img.get_ptr(), pMem, width * height * sizeof(float) * 4);
|
|
|
|
break;
|
|
}
|
|
case hdr_image_type::cHITPNGImage:
|
|
{
|
|
image ldr_img;
|
|
if (!load_png(static_cast<const uint8_t *>(pMem), mem_size, ldr_img))
|
|
return false;
|
|
|
|
convert_ldr_to_hdr_image(img, ldr_img, ldr_srgb_to_linear);
|
|
break;
|
|
}
|
|
case hdr_image_type::cHITEXRImage:
|
|
{
|
|
if (!read_exr(pMem, mem_size, img))
|
|
return false;
|
|
|
|
break;
|
|
}
|
|
case hdr_image_type::cHITHDRImage:
|
|
{
|
|
uint8_vec buf(mem_size);
|
|
memcpy(buf.get_ptr(), pMem, mem_size);
|
|
|
|
rgbe_header_info hdr;
|
|
if (!read_rgbe(buf, img, hdr))
|
|
return false;
|
|
|
|
break;
|
|
}
|
|
default:
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool load_image_hdr(const char* pFilename, imagef& img, bool ldr_srgb_to_linear)
|
|
{
|
|
std::string ext(string_get_extension(std::string(pFilename)));
|
|
|
|
if (ext.length() == 0)
|
|
return false;
|
|
|
|
const char* pExt = ext.c_str();
|
|
|
|
if (strcasecmp(pExt, "hdr") == 0)
|
|
{
|
|
rgbe_header_info rgbe_info;
|
|
if (!read_rgbe(pFilename, img, rgbe_info))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
if (strcasecmp(pExt, "exr") == 0)
|
|
{
|
|
int n_chans = 0;
|
|
if (!read_exr(pFilename, img, n_chans))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// Try loading image as LDR, then optionally convert to linear light.
|
|
{
|
|
image ldr_img;
|
|
if (!load_image(pFilename, ldr_img))
|
|
return false;
|
|
|
|
convert_ldr_to_hdr_image(img, ldr_img, ldr_srgb_to_linear);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool save_png(const char* pFilename, const image &img, uint32_t image_save_flags, uint32_t grayscale_comp)
|
|
{
|
|
if (!img.get_total_pixels())
|
|
return false;
|
|
|
|
void* pPNG_data = nullptr;
|
|
size_t PNG_data_size = 0;
|
|
|
|
if (image_save_flags & cImageSaveGrayscale)
|
|
{
|
|
uint8_vec g_pixels(img.get_total_pixels());
|
|
uint8_t* pDst = &g_pixels[0];
|
|
|
|
for (uint32_t y = 0; y < img.get_height(); y++)
|
|
for (uint32_t x = 0; x < img.get_width(); x++)
|
|
*pDst++ = img(x, y)[grayscale_comp];
|
|
|
|
pPNG_data = buminiz::tdefl_write_image_to_png_file_in_memory_ex(g_pixels.data(), img.get_width(), img.get_height(), 1, &PNG_data_size, 1, false);
|
|
}
|
|
else
|
|
{
|
|
bool has_alpha = false;
|
|
|
|
if ((image_save_flags & cImageSaveIgnoreAlpha) == 0)
|
|
has_alpha = img.has_alpha();
|
|
|
|
if (!has_alpha)
|
|
{
|
|
uint8_vec rgb_pixels(img.get_total_pixels() * 3);
|
|
uint8_t* pDst = &rgb_pixels[0];
|
|
|
|
for (uint32_t y = 0; y < img.get_height(); y++)
|
|
{
|
|
const color_rgba* pSrc = &img(0, y);
|
|
for (uint32_t x = 0; x < img.get_width(); x++)
|
|
{
|
|
pDst[0] = pSrc->r;
|
|
pDst[1] = pSrc->g;
|
|
pDst[2] = pSrc->b;
|
|
|
|
pSrc++;
|
|
pDst += 3;
|
|
}
|
|
}
|
|
|
|
pPNG_data = buminiz::tdefl_write_image_to_png_file_in_memory_ex(rgb_pixels.data(), img.get_width(), img.get_height(), 3, &PNG_data_size, 1, false);
|
|
}
|
|
else
|
|
{
|
|
pPNG_data = buminiz::tdefl_write_image_to_png_file_in_memory_ex(img.get_ptr(), img.get_width(), img.get_height(), 4, &PNG_data_size, 1, false);
|
|
}
|
|
}
|
|
|
|
if (!pPNG_data)
|
|
return false;
|
|
|
|
bool status = write_data_to_file(pFilename, pPNG_data, PNG_data_size);
|
|
if (!status)
|
|
{
|
|
error_printf("save_png: Failed writing to filename \"%s\"!\n", pFilename);
|
|
}
|
|
|
|
free(pPNG_data);
|
|
|
|
return status;
|
|
}
|
|
|
|
bool read_file_to_vec(const char* pFilename, uint8_vec& data)
|
|
{
|
|
FILE* pFile = nullptr;
|
|
#ifdef _WIN32
|
|
fopen_s(&pFile, pFilename, "rb");
|
|
#else
|
|
pFile = fopen(pFilename, "rb");
|
|
#endif
|
|
if (!pFile)
|
|
return false;
|
|
|
|
fseek(pFile, 0, SEEK_END);
|
|
#ifdef _WIN32
|
|
int64_t filesize = _ftelli64(pFile);
|
|
#else
|
|
int64_t filesize = ftello(pFile);
|
|
#endif
|
|
if (filesize < 0)
|
|
{
|
|
fclose(pFile);
|
|
return false;
|
|
}
|
|
fseek(pFile, 0, SEEK_SET);
|
|
|
|
if (sizeof(size_t) == sizeof(uint32_t))
|
|
{
|
|
if (filesize > 0x70000000)
|
|
{
|
|
// File might be too big to load safely in one alloc
|
|
fclose(pFile);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (!data.try_resize((size_t)filesize))
|
|
{
|
|
fclose(pFile);
|
|
return false;
|
|
}
|
|
|
|
if (filesize)
|
|
{
|
|
if (fread(&data[0], 1, (size_t)filesize, pFile) != (size_t)filesize)
|
|
{
|
|
fclose(pFile);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
fclose(pFile);
|
|
return true;
|
|
}
|
|
|
|
bool read_file_to_data(const char* pFilename, void *pData, size_t len)
|
|
{
|
|
assert(pData && len);
|
|
if ((!pData) || (!len))
|
|
return false;
|
|
|
|
FILE* pFile = nullptr;
|
|
#ifdef _WIN32
|
|
fopen_s(&pFile, pFilename, "rb");
|
|
#else
|
|
pFile = fopen(pFilename, "rb");
|
|
#endif
|
|
if (!pFile)
|
|
return false;
|
|
|
|
fseek(pFile, 0, SEEK_END);
|
|
#ifdef _WIN32
|
|
int64_t filesize = _ftelli64(pFile);
|
|
#else
|
|
int64_t filesize = ftello(pFile);
|
|
#endif
|
|
|
|
if ((filesize < 0) || ((size_t)filesize < len))
|
|
{
|
|
fclose(pFile);
|
|
return false;
|
|
}
|
|
fseek(pFile, 0, SEEK_SET);
|
|
|
|
if (fread(pData, 1, (size_t)len, pFile) != (size_t)len)
|
|
{
|
|
fclose(pFile);
|
|
return false;
|
|
}
|
|
|
|
fclose(pFile);
|
|
return true;
|
|
}
|
|
|
|
bool write_data_to_file(const char* pFilename, const void* pData, size_t len)
|
|
{
|
|
FILE* pFile = nullptr;
|
|
#ifdef _WIN32
|
|
fopen_s(&pFile, pFilename, "wb");
|
|
#else
|
|
pFile = fopen(pFilename, "wb");
|
|
#endif
|
|
if (!pFile)
|
|
return false;
|
|
|
|
if (len)
|
|
{
|
|
if (fwrite(pData, 1, len, pFile) != len)
|
|
{
|
|
fclose(pFile);
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return fclose(pFile) != EOF;
|
|
}
|
|
|
|
bool image_resample(const image &src, image &dst, bool srgb,
|
|
const char *pFilter, float filter_scale,
|
|
bool wrapping,
|
|
uint32_t first_comp, uint32_t num_comps)
|
|
{
|
|
assert((first_comp + num_comps) <= 4);
|
|
|
|
const int cMaxComps = 4;
|
|
|
|
const uint32_t src_w = src.get_width(), src_h = src.get_height();
|
|
const uint32_t dst_w = dst.get_width(), dst_h = dst.get_height();
|
|
|
|
if (maximum(src_w, src_h) > BASISU_RESAMPLER_MAX_DIMENSION)
|
|
{
|
|
printf("Image is too large!\n");
|
|
return false;
|
|
}
|
|
|
|
if (!src_w || !src_h || !dst_w || !dst_h)
|
|
return false;
|
|
|
|
if ((num_comps < 1) || (num_comps > cMaxComps))
|
|
return false;
|
|
|
|
if ((minimum(dst_w, dst_h) < 1) || (maximum(dst_w, dst_h) > BASISU_RESAMPLER_MAX_DIMENSION))
|
|
{
|
|
printf("Image is too large!\n");
|
|
return false;
|
|
}
|
|
|
|
if ((src_w == dst_w) && (src_h == dst_h))
|
|
{
|
|
dst = src;
|
|
return true;
|
|
}
|
|
|
|
float srgb_to_linear_table[256];
|
|
if (srgb)
|
|
{
|
|
for (int i = 0; i < 256; ++i)
|
|
srgb_to_linear_table[i] = srgb_to_linear((float)i * (1.0f/255.0f));
|
|
}
|
|
|
|
const int LINEAR_TO_SRGB_TABLE_SIZE = 8192;
|
|
uint8_t linear_to_srgb_table[LINEAR_TO_SRGB_TABLE_SIZE];
|
|
|
|
if (srgb)
|
|
{
|
|
for (int i = 0; i < LINEAR_TO_SRGB_TABLE_SIZE; ++i)
|
|
linear_to_srgb_table[i] = (uint8_t)clamp<int>((int)(255.0f * linear_to_srgb((float)i * (1.0f / (LINEAR_TO_SRGB_TABLE_SIZE - 1))) + .5f), 0, 255);
|
|
}
|
|
|
|
std::vector<float> samples[cMaxComps];
|
|
Resampler *resamplers[cMaxComps];
|
|
|
|
resamplers[0] = new Resampler(src_w, src_h, dst_w, dst_h,
|
|
wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 0.0f, 1.0f,
|
|
pFilter, nullptr, nullptr, filter_scale, filter_scale, 0, 0);
|
|
samples[0].resize(src_w);
|
|
|
|
for (uint32_t i = 1; i < num_comps; ++i)
|
|
{
|
|
resamplers[i] = new Resampler(src_w, src_h, dst_w, dst_h,
|
|
wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 0.0f, 1.0f,
|
|
pFilter, resamplers[0]->get_clist_x(), resamplers[0]->get_clist_y(), filter_scale, filter_scale, 0, 0);
|
|
samples[i].resize(src_w);
|
|
}
|
|
|
|
uint32_t dst_y = 0;
|
|
|
|
for (uint32_t src_y = 0; src_y < src_h; ++src_y)
|
|
{
|
|
const color_rgba *pSrc = &src(0, src_y);
|
|
|
|
// Put source lines into resampler(s)
|
|
for (uint32_t x = 0; x < src_w; ++x)
|
|
{
|
|
for (uint32_t c = 0; c < num_comps; ++c)
|
|
{
|
|
const uint32_t comp_index = first_comp + c;
|
|
const uint32_t v = (*pSrc)[comp_index];
|
|
|
|
if (!srgb || (comp_index == 3))
|
|
samples[c][x] = v * (1.0f / 255.0f);
|
|
else
|
|
samples[c][x] = srgb_to_linear_table[v];
|
|
}
|
|
|
|
pSrc++;
|
|
}
|
|
|
|
for (uint32_t c = 0; c < num_comps; ++c)
|
|
{
|
|
if (!resamplers[c]->put_line(&samples[c][0]))
|
|
{
|
|
for (uint32_t i = 0; i < num_comps; i++)
|
|
delete resamplers[i];
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Now retrieve any output lines
|
|
for (;;)
|
|
{
|
|
uint32_t c;
|
|
for (c = 0; c < num_comps; ++c)
|
|
{
|
|
const uint32_t comp_index = first_comp + c;
|
|
|
|
const float *pOutput_samples = resamplers[c]->get_line();
|
|
if (!pOutput_samples)
|
|
break;
|
|
|
|
const bool linear_flag = !srgb || (comp_index == 3);
|
|
|
|
color_rgba *pDst = &dst(0, dst_y);
|
|
|
|
for (uint32_t x = 0; x < dst_w; x++)
|
|
{
|
|
// TODO: Add dithering
|
|
if (linear_flag)
|
|
{
|
|
int j = (int)(255.0f * pOutput_samples[x] + .5f);
|
|
(*pDst)[comp_index] = (uint8_t)clamp<int>(j, 0, 255);
|
|
}
|
|
else
|
|
{
|
|
int j = (int)((LINEAR_TO_SRGB_TABLE_SIZE - 1) * pOutput_samples[x] + .5f);
|
|
(*pDst)[comp_index] = linear_to_srgb_table[clamp<int>(j, 0, LINEAR_TO_SRGB_TABLE_SIZE - 1)];
|
|
}
|
|
|
|
pDst++;
|
|
}
|
|
}
|
|
if (c < num_comps)
|
|
break;
|
|
|
|
++dst_y;
|
|
}
|
|
}
|
|
|
|
for (uint32_t i = 0; i < num_comps; ++i)
|
|
delete resamplers[i];
|
|
|
|
return true;
|
|
}
|
|
|
|
bool image_resample(const imagef& src, imagef& dst,
|
|
const char* pFilter, float filter_scale,
|
|
bool wrapping,
|
|
uint32_t first_comp, uint32_t num_comps)
|
|
{
|
|
assert((first_comp + num_comps) <= 4);
|
|
|
|
const int cMaxComps = 4;
|
|
|
|
const uint32_t src_w = src.get_width(), src_h = src.get_height();
|
|
const uint32_t dst_w = dst.get_width(), dst_h = dst.get_height();
|
|
|
|
if (maximum(src_w, src_h) > BASISU_RESAMPLER_MAX_DIMENSION)
|
|
{
|
|
printf("Image is too large!\n");
|
|
return false;
|
|
}
|
|
|
|
if (!src_w || !src_h || !dst_w || !dst_h)
|
|
return false;
|
|
|
|
if ((num_comps < 1) || (num_comps > cMaxComps))
|
|
return false;
|
|
|
|
if ((minimum(dst_w, dst_h) < 1) || (maximum(dst_w, dst_h) > BASISU_RESAMPLER_MAX_DIMENSION))
|
|
{
|
|
printf("Image is too large!\n");
|
|
return false;
|
|
}
|
|
|
|
if ((src_w == dst_w) && (src_h == dst_h))
|
|
{
|
|
dst = src;
|
|
return true;
|
|
}
|
|
|
|
std::vector<float> samples[cMaxComps];
|
|
Resampler* resamplers[cMaxComps];
|
|
|
|
resamplers[0] = new Resampler(src_w, src_h, dst_w, dst_h,
|
|
wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 1.0f, 0.0f, // no clamping
|
|
pFilter, nullptr, nullptr, filter_scale, filter_scale, 0, 0);
|
|
samples[0].resize(src_w);
|
|
|
|
for (uint32_t i = 1; i < num_comps; ++i)
|
|
{
|
|
resamplers[i] = new Resampler(src_w, src_h, dst_w, dst_h,
|
|
wrapping ? Resampler::BOUNDARY_WRAP : Resampler::BOUNDARY_CLAMP, 1.0f, 0.0f, // no clamping
|
|
pFilter, resamplers[0]->get_clist_x(), resamplers[0]->get_clist_y(), filter_scale, filter_scale, 0, 0);
|
|
samples[i].resize(src_w);
|
|
}
|
|
|
|
uint32_t dst_y = 0;
|
|
|
|
for (uint32_t src_y = 0; src_y < src_h; ++src_y)
|
|
{
|
|
const vec4F* pSrc = &src(0, src_y);
|
|
|
|
// Put source lines into resampler(s)
|
|
for (uint32_t x = 0; x < src_w; ++x)
|
|
{
|
|
for (uint32_t c = 0; c < num_comps; ++c)
|
|
{
|
|
const uint32_t comp_index = first_comp + c;
|
|
const float v = (*pSrc)[comp_index];
|
|
|
|
samples[c][x] = v;
|
|
}
|
|
|
|
pSrc++;
|
|
}
|
|
|
|
for (uint32_t c = 0; c < num_comps; ++c)
|
|
{
|
|
if (!resamplers[c]->put_line(&samples[c][0]))
|
|
{
|
|
for (uint32_t i = 0; i < num_comps; i++)
|
|
delete resamplers[i];
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Now retrieve any output lines
|
|
for (;;)
|
|
{
|
|
uint32_t c;
|
|
for (c = 0; c < num_comps; ++c)
|
|
{
|
|
const uint32_t comp_index = first_comp + c;
|
|
|
|
const float* pOutput_samples = resamplers[c]->get_line();
|
|
if (!pOutput_samples)
|
|
break;
|
|
|
|
vec4F* pDst = &dst(0, dst_y);
|
|
|
|
for (uint32_t x = 0; x < dst_w; x++)
|
|
{
|
|
(*pDst)[comp_index] = pOutput_samples[x];
|
|
pDst++;
|
|
}
|
|
}
|
|
if (c < num_comps)
|
|
break;
|
|
|
|
++dst_y;
|
|
}
|
|
}
|
|
|
|
for (uint32_t i = 0; i < num_comps; ++i)
|
|
delete resamplers[i];
|
|
|
|
return true;
|
|
}
|
|
|
|
void canonical_huffman_calculate_minimum_redundancy(sym_freq *A, int num_syms)
|
|
{
|
|
// See the paper "In-Place Calculation of Minimum Redundancy Codes" by Moffat and Katajainen
|
|
if (!num_syms)
|
|
return;
|
|
|
|
if (1 == num_syms)
|
|
{
|
|
A[0].m_key = 1;
|
|
return;
|
|
}
|
|
|
|
A[0].m_key += A[1].m_key;
|
|
|
|
int s = 2, r = 0, next;
|
|
for (next = 1; next < (num_syms - 1); ++next)
|
|
{
|
|
if ((s >= num_syms) || (A[r].m_key < A[s].m_key))
|
|
{
|
|
A[next].m_key = A[r].m_key;
|
|
A[r].m_key = next;
|
|
++r;
|
|
}
|
|
else
|
|
{
|
|
A[next].m_key = A[s].m_key;
|
|
++s;
|
|
}
|
|
|
|
if ((s >= num_syms) || ((r < next) && A[r].m_key < A[s].m_key))
|
|
{
|
|
A[next].m_key = A[next].m_key + A[r].m_key;
|
|
A[r].m_key = next;
|
|
++r;
|
|
}
|
|
else
|
|
{
|
|
A[next].m_key = A[next].m_key + A[s].m_key;
|
|
++s;
|
|
}
|
|
}
|
|
A[num_syms - 2].m_key = 0;
|
|
|
|
for (next = num_syms - 3; next >= 0; --next)
|
|
{
|
|
A[next].m_key = 1 + A[A[next].m_key].m_key;
|
|
}
|
|
|
|
int num_avail = 1, num_used = 0, depth = 0;
|
|
r = num_syms - 2;
|
|
next = num_syms - 1;
|
|
while (num_avail > 0)
|
|
{
|
|
for ( ; (r >= 0) && ((int)A[r].m_key == depth); ++num_used, --r )
|
|
;
|
|
|
|
for ( ; num_avail > num_used; --next, --num_avail)
|
|
A[next].m_key = depth;
|
|
|
|
num_avail = 2 * num_used;
|
|
num_used = 0;
|
|
++depth;
|
|
}
|
|
}
|
|
|
|
void canonical_huffman_enforce_max_code_size(int *pNum_codes, int code_list_len, int max_code_size)
|
|
{
|
|
int i;
|
|
uint32_t total = 0;
|
|
if (code_list_len <= 1)
|
|
return;
|
|
|
|
for (i = max_code_size + 1; i <= cHuffmanMaxSupportedInternalCodeSize; i++)
|
|
pNum_codes[max_code_size] += pNum_codes[i];
|
|
|
|
for (i = max_code_size; i > 0; i--)
|
|
total += (((uint32_t)pNum_codes[i]) << (max_code_size - i));
|
|
|
|
while (total != (1UL << max_code_size))
|
|
{
|
|
pNum_codes[max_code_size]--;
|
|
for (i = max_code_size - 1; i > 0; i--)
|
|
{
|
|
if (pNum_codes[i])
|
|
{
|
|
pNum_codes[i]--;
|
|
pNum_codes[i + 1] += 2;
|
|
break;
|
|
}
|
|
}
|
|
|
|
total--;
|
|
}
|
|
}
|
|
|
|
sym_freq *canonical_huffman_radix_sort_syms(uint32_t num_syms, sym_freq *pSyms0, sym_freq *pSyms1)
|
|
{
|
|
uint32_t total_passes = 2, pass_shift, pass, i, hist[256 * 2];
|
|
sym_freq *pCur_syms = pSyms0, *pNew_syms = pSyms1;
|
|
|
|
clear_obj(hist);
|
|
|
|
for (i = 0; i < num_syms; i++)
|
|
{
|
|
uint32_t freq = pSyms0[i].m_key;
|
|
|
|
// We scale all input frequencies to 16-bits.
|
|
assert(freq <= UINT16_MAX);
|
|
|
|
hist[freq & 0xFF]++;
|
|
hist[256 + ((freq >> 8) & 0xFF)]++;
|
|
}
|
|
|
|
while ((total_passes > 1) && (num_syms == hist[(total_passes - 1) * 256]))
|
|
total_passes--;
|
|
|
|
for (pass_shift = 0, pass = 0; pass < total_passes; pass++, pass_shift += 8)
|
|
{
|
|
const uint32_t *pHist = &hist[pass << 8];
|
|
uint32_t offsets[256], cur_ofs = 0;
|
|
for (i = 0; i < 256; i++)
|
|
{
|
|
offsets[i] = cur_ofs;
|
|
cur_ofs += pHist[i];
|
|
}
|
|
|
|
for (i = 0; i < num_syms; i++)
|
|
pNew_syms[offsets[(pCur_syms[i].m_key >> pass_shift) & 0xFF]++] = pCur_syms[i];
|
|
|
|
sym_freq *t = pCur_syms;
|
|
pCur_syms = pNew_syms;
|
|
pNew_syms = t;
|
|
}
|
|
|
|
return pCur_syms;
|
|
}
|
|
|
|
bool huffman_encoding_table::init(uint32_t num_syms, const uint16_t *pFreq, uint32_t max_code_size)
|
|
{
|
|
if (max_code_size > cHuffmanMaxSupportedCodeSize)
|
|
return false;
|
|
if ((!num_syms) || (num_syms > cHuffmanMaxSyms))
|
|
return false;
|
|
|
|
uint32_t total_used_syms = 0;
|
|
for (uint32_t i = 0; i < num_syms; i++)
|
|
if (pFreq[i])
|
|
total_used_syms++;
|
|
|
|
if (!total_used_syms)
|
|
return false;
|
|
|
|
std::vector<sym_freq> sym_freq0(total_used_syms), sym_freq1(total_used_syms);
|
|
for (uint32_t i = 0, j = 0; i < num_syms; i++)
|
|
{
|
|
if (pFreq[i])
|
|
{
|
|
sym_freq0[j].m_key = pFreq[i];
|
|
sym_freq0[j++].m_sym_index = static_cast<uint16_t>(i);
|
|
}
|
|
}
|
|
|
|
sym_freq *pSym_freq = canonical_huffman_radix_sort_syms(total_used_syms, &sym_freq0[0], &sym_freq1[0]);
|
|
|
|
canonical_huffman_calculate_minimum_redundancy(pSym_freq, total_used_syms);
|
|
|
|
int num_codes[cHuffmanMaxSupportedInternalCodeSize + 1];
|
|
clear_obj(num_codes);
|
|
|
|
for (uint32_t i = 0; i < total_used_syms; i++)
|
|
{
|
|
if (pSym_freq[i].m_key > cHuffmanMaxSupportedInternalCodeSize)
|
|
return false;
|
|
|
|
num_codes[pSym_freq[i].m_key]++;
|
|
}
|
|
|
|
canonical_huffman_enforce_max_code_size(num_codes, total_used_syms, max_code_size);
|
|
|
|
m_code_sizes.resize(0);
|
|
m_code_sizes.resize(num_syms);
|
|
|
|
m_codes.resize(0);
|
|
m_codes.resize(num_syms);
|
|
|
|
for (uint32_t i = 1, j = total_used_syms; i <= max_code_size; i++)
|
|
for (uint32_t l = num_codes[i]; l > 0; l--)
|
|
m_code_sizes[pSym_freq[--j].m_sym_index] = static_cast<uint8_t>(i);
|
|
|
|
uint32_t next_code[cHuffmanMaxSupportedInternalCodeSize + 1];
|
|
|
|
next_code[1] = 0;
|
|
for (uint32_t j = 0, i = 2; i <= max_code_size; i++)
|
|
next_code[i] = j = ((j + num_codes[i - 1]) << 1);
|
|
|
|
for (uint32_t i = 0; i < num_syms; i++)
|
|
{
|
|
uint32_t rev_code = 0, code, code_size;
|
|
if ((code_size = m_code_sizes[i]) == 0)
|
|
continue;
|
|
if (code_size > cHuffmanMaxSupportedInternalCodeSize)
|
|
return false;
|
|
code = next_code[code_size]++;
|
|
for (uint32_t l = code_size; l > 0; l--, code >>= 1)
|
|
rev_code = (rev_code << 1) | (code & 1);
|
|
m_codes[i] = static_cast<uint16_t>(rev_code);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool huffman_encoding_table::init(uint32_t num_syms, const uint32_t *pSym_freq, uint32_t max_code_size)
|
|
{
|
|
if ((!num_syms) || (num_syms > cHuffmanMaxSyms))
|
|
return false;
|
|
|
|
uint16_vec sym_freq(num_syms);
|
|
|
|
uint32_t max_freq = 0;
|
|
for (uint32_t i = 0; i < num_syms; i++)
|
|
max_freq = maximum(max_freq, pSym_freq[i]);
|
|
|
|
if (max_freq < UINT16_MAX)
|
|
{
|
|
for (uint32_t i = 0; i < num_syms; i++)
|
|
sym_freq[i] = static_cast<uint16_t>(pSym_freq[i]);
|
|
}
|
|
else
|
|
{
|
|
for (uint32_t i = 0; i < num_syms; i++)
|
|
{
|
|
if (pSym_freq[i])
|
|
{
|
|
uint32_t f = static_cast<uint32_t>((static_cast<uint64_t>(pSym_freq[i]) * 65534U + (max_freq >> 1)) / max_freq);
|
|
sym_freq[i] = static_cast<uint16_t>(clamp<uint32_t>(f, 1, 65534));
|
|
}
|
|
}
|
|
}
|
|
|
|
return init(num_syms, &sym_freq[0], max_code_size);
|
|
}
|
|
|
|
void bitwise_coder::end_nonzero_run(uint16_vec &syms, uint32_t &run_size, uint32_t len)
|
|
{
|
|
if (run_size)
|
|
{
|
|
if (run_size < cHuffmanSmallRepeatSizeMin)
|
|
{
|
|
while (run_size--)
|
|
syms.push_back(static_cast<uint16_t>(len));
|
|
}
|
|
else if (run_size <= cHuffmanSmallRepeatSizeMax)
|
|
{
|
|
syms.push_back(static_cast<uint16_t>(cHuffmanSmallRepeatCode | ((run_size - cHuffmanSmallRepeatSizeMin) << 6)));
|
|
}
|
|
else
|
|
{
|
|
assert((run_size >= cHuffmanBigRepeatSizeMin) && (run_size <= cHuffmanBigRepeatSizeMax));
|
|
syms.push_back(static_cast<uint16_t>(cHuffmanBigRepeatCode | ((run_size - cHuffmanBigRepeatSizeMin) << 6)));
|
|
}
|
|
}
|
|
|
|
run_size = 0;
|
|
}
|
|
|
|
void bitwise_coder::end_zero_run(uint16_vec &syms, uint32_t &run_size)
|
|
{
|
|
if (run_size)
|
|
{
|
|
if (run_size < cHuffmanSmallZeroRunSizeMin)
|
|
{
|
|
while (run_size--)
|
|
syms.push_back(0);
|
|
}
|
|
else if (run_size <= cHuffmanSmallZeroRunSizeMax)
|
|
{
|
|
syms.push_back(static_cast<uint16_t>(cHuffmanSmallZeroRunCode | ((run_size - cHuffmanSmallZeroRunSizeMin) << 6)));
|
|
}
|
|
else
|
|
{
|
|
assert((run_size >= cHuffmanBigZeroRunSizeMin) && (run_size <= cHuffmanBigZeroRunSizeMax));
|
|
syms.push_back(static_cast<uint16_t>(cHuffmanBigZeroRunCode | ((run_size - cHuffmanBigZeroRunSizeMin) << 6)));
|
|
}
|
|
}
|
|
|
|
run_size = 0;
|
|
}
|
|
|
|
uint32_t bitwise_coder::emit_huffman_table(const huffman_encoding_table &tab)
|
|
{
|
|
const uint64_t start_bits = m_total_bits;
|
|
|
|
const uint8_vec &code_sizes = tab.get_code_sizes();
|
|
|
|
uint32_t total_used = tab.get_total_used_codes();
|
|
put_bits(total_used, cHuffmanMaxSymsLog2);
|
|
|
|
if (!total_used)
|
|
return 0;
|
|
|
|
uint16_vec syms;
|
|
syms.reserve(total_used + 16);
|
|
|
|
uint32_t prev_code_len = UINT_MAX, zero_run_size = 0, nonzero_run_size = 0;
|
|
|
|
for (uint32_t i = 0; i <= total_used; ++i)
|
|
{
|
|
const uint32_t code_len = (i == total_used) ? 0xFF : code_sizes[i];
|
|
assert((code_len == 0xFF) || (code_len <= 16));
|
|
|
|
if (code_len)
|
|
{
|
|
end_zero_run(syms, zero_run_size);
|
|
|
|
if (code_len != prev_code_len)
|
|
{
|
|
end_nonzero_run(syms, nonzero_run_size, prev_code_len);
|
|
if (code_len != 0xFF)
|
|
syms.push_back(static_cast<uint16_t>(code_len));
|
|
}
|
|
else if (++nonzero_run_size == cHuffmanBigRepeatSizeMax)
|
|
end_nonzero_run(syms, nonzero_run_size, prev_code_len);
|
|
}
|
|
else
|
|
{
|
|
end_nonzero_run(syms, nonzero_run_size, prev_code_len);
|
|
|
|
if (++zero_run_size == cHuffmanBigZeroRunSizeMax)
|
|
end_zero_run(syms, zero_run_size);
|
|
}
|
|
|
|
prev_code_len = code_len;
|
|
}
|
|
|
|
histogram h(cHuffmanTotalCodelengthCodes);
|
|
for (uint32_t i = 0; i < syms.size(); i++)
|
|
h.inc(syms[i] & 63);
|
|
|
|
huffman_encoding_table ct;
|
|
if (!ct.init(h, 7))
|
|
return 0;
|
|
|
|
assert(cHuffmanTotalSortedCodelengthCodes == cHuffmanTotalCodelengthCodes);
|
|
|
|
uint32_t total_codelength_codes;
|
|
for (total_codelength_codes = cHuffmanTotalSortedCodelengthCodes; total_codelength_codes > 0; total_codelength_codes--)
|
|
if (ct.get_code_sizes()[g_huffman_sorted_codelength_codes[total_codelength_codes - 1]])
|
|
break;
|
|
|
|
assert(total_codelength_codes);
|
|
|
|
put_bits(total_codelength_codes, 5);
|
|
for (uint32_t i = 0; i < total_codelength_codes; i++)
|
|
put_bits(ct.get_code_sizes()[g_huffman_sorted_codelength_codes[i]], 3);
|
|
|
|
for (uint32_t i = 0; i < syms.size(); ++i)
|
|
{
|
|
const uint32_t l = syms[i] & 63, e = syms[i] >> 6;
|
|
|
|
put_code(l, ct);
|
|
|
|
if (l == cHuffmanSmallZeroRunCode)
|
|
put_bits(e, cHuffmanSmallZeroRunExtraBits);
|
|
else if (l == cHuffmanBigZeroRunCode)
|
|
put_bits(e, cHuffmanBigZeroRunExtraBits);
|
|
else if (l == cHuffmanSmallRepeatCode)
|
|
put_bits(e, cHuffmanSmallRepeatExtraBits);
|
|
else if (l == cHuffmanBigRepeatCode)
|
|
put_bits(e, cHuffmanBigRepeatExtraBits);
|
|
}
|
|
|
|
return (uint32_t)(m_total_bits - start_bits);
|
|
}
|
|
|
|
bool huffman_test(int rand_seed)
|
|
{
|
|
histogram h(19);
|
|
|
|
// Feed in a fibonacci sequence to force large codesizes
|
|
h[0] += 1; h[1] += 1; h[2] += 2; h[3] += 3;
|
|
h[4] += 5; h[5] += 8; h[6] += 13; h[7] += 21;
|
|
h[8] += 34; h[9] += 55; h[10] += 89; h[11] += 144;
|
|
h[12] += 233; h[13] += 377; h[14] += 610; h[15] += 987;
|
|
h[16] += 1597; h[17] += 2584; h[18] += 4181;
|
|
|
|
huffman_encoding_table etab;
|
|
etab.init(h, 16);
|
|
|
|
{
|
|
bitwise_coder c;
|
|
c.init(1024);
|
|
|
|
c.emit_huffman_table(etab);
|
|
for (int i = 0; i < 19; i++)
|
|
c.put_code(i, etab);
|
|
|
|
c.flush();
|
|
|
|
basist::bitwise_decoder d;
|
|
d.init(&c.get_bytes()[0], static_cast<uint32_t>(c.get_bytes().size()));
|
|
|
|
basist::huffman_decoding_table dtab;
|
|
bool success = d.read_huffman_table(dtab);
|
|
if (!success)
|
|
{
|
|
assert(0);
|
|
printf("Failure 5\n");
|
|
return false;
|
|
}
|
|
|
|
for (uint32_t i = 0; i < 19; i++)
|
|
{
|
|
uint32_t s = d.decode_huffman(dtab);
|
|
if (s != i)
|
|
{
|
|
assert(0);
|
|
printf("Failure 5\n");
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
basisu::rand r;
|
|
r.seed(rand_seed);
|
|
|
|
for (int iter = 0; iter < 500000; iter++)
|
|
{
|
|
printf("%u\n", iter);
|
|
|
|
uint32_t max_sym = r.irand(0, 8193);
|
|
uint32_t num_codes = r.irand(1, 10000);
|
|
uint_vec syms(num_codes);
|
|
|
|
for (uint32_t i = 0; i < num_codes; i++)
|
|
{
|
|
if (r.bit())
|
|
syms[i] = r.irand(0, max_sym);
|
|
else
|
|
{
|
|
int s = (int)(r.gaussian((float)max_sym / 2, (float)maximum<int>(1, max_sym / 2)) + .5f);
|
|
s = basisu::clamp<int>(s, 0, max_sym);
|
|
|
|
syms[i] = s;
|
|
}
|
|
|
|
}
|
|
|
|
histogram h1(max_sym + 1);
|
|
for (uint32_t i = 0; i < num_codes; i++)
|
|
h1[syms[i]]++;
|
|
|
|
huffman_encoding_table etab2;
|
|
if (!etab2.init(h1, 16))
|
|
{
|
|
assert(0);
|
|
printf("Failed 0\n");
|
|
return false;
|
|
}
|
|
|
|
bitwise_coder c;
|
|
c.init(1024);
|
|
|
|
c.emit_huffman_table(etab2);
|
|
|
|
for (uint32_t i = 0; i < num_codes; i++)
|
|
c.put_code(syms[i], etab2);
|
|
|
|
c.flush();
|
|
|
|
basist::bitwise_decoder d;
|
|
d.init(&c.get_bytes()[0], (uint32_t)c.get_bytes().size());
|
|
|
|
basist::huffman_decoding_table dtab;
|
|
bool success = d.read_huffman_table(dtab);
|
|
if (!success)
|
|
{
|
|
assert(0);
|
|
printf("Failed 2\n");
|
|
return false;
|
|
}
|
|
|
|
for (uint32_t i = 0; i < num_codes; i++)
|
|
{
|
|
uint32_t s = d.decode_huffman(dtab);
|
|
if (s != syms[i])
|
|
{
|
|
assert(0);
|
|
printf("Failed 4\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void palette_index_reorderer::init(uint32_t num_indices, const uint32_t *pIndices, uint32_t num_syms, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight)
|
|
{
|
|
assert((num_syms > 0) && (num_indices > 0));
|
|
assert((dist_func_weight >= 0.0f) && (dist_func_weight <= 1.0f));
|
|
|
|
clear();
|
|
|
|
m_remap_table.resize(num_syms);
|
|
m_entries_picked.reserve(num_syms);
|
|
m_total_count_to_picked.resize(num_syms);
|
|
|
|
if (num_indices <= 1)
|
|
return;
|
|
|
|
prepare_hist(num_syms, num_indices, pIndices);
|
|
find_initial(num_syms);
|
|
|
|
while (m_entries_to_do.size())
|
|
{
|
|
// Find the best entry to move into the picked list.
|
|
uint32_t best_entry;
|
|
double best_count;
|
|
find_next_entry(best_entry, best_count, pDist_func, pCtx, dist_func_weight);
|
|
|
|
// We now have chosen an entry to place in the picked list, now determine which side it goes on.
|
|
const uint32_t entry_to_move = m_entries_to_do[best_entry];
|
|
|
|
float side = pick_side(num_syms, entry_to_move, pDist_func, pCtx, dist_func_weight);
|
|
|
|
// Put entry_to_move either on the "left" or "right" side of the picked entries
|
|
if (side <= 0)
|
|
m_entries_picked.push_back(entry_to_move);
|
|
else
|
|
m_entries_picked.insert(m_entries_picked.begin(), entry_to_move);
|
|
|
|
// Erase best_entry from the todo list
|
|
m_entries_to_do.erase(m_entries_to_do.begin() + best_entry);
|
|
|
|
// We've just moved best_entry to the picked list, so now we need to update m_total_count_to_picked[] to factor the additional count to best_entry
|
|
for (uint32_t i = 0; i < m_entries_to_do.size(); i++)
|
|
m_total_count_to_picked[m_entries_to_do[i]] += get_hist(m_entries_to_do[i], entry_to_move, num_syms);
|
|
}
|
|
|
|
for (uint32_t i = 0; i < num_syms; i++)
|
|
m_remap_table[m_entries_picked[i]] = i;
|
|
}
|
|
|
|
void palette_index_reorderer::prepare_hist(uint32_t num_syms, uint32_t num_indices, const uint32_t *pIndices)
|
|
{
|
|
m_hist.resize(0);
|
|
m_hist.resize(num_syms * num_syms);
|
|
|
|
for (uint32_t i = 0; i < num_indices; i++)
|
|
{
|
|
const uint32_t idx = pIndices[i];
|
|
inc_hist(idx, (i < (num_indices - 1)) ? pIndices[i + 1] : -1, num_syms);
|
|
inc_hist(idx, (i > 0) ? pIndices[i - 1] : -1, num_syms);
|
|
}
|
|
}
|
|
|
|
void palette_index_reorderer::find_initial(uint32_t num_syms)
|
|
{
|
|
uint32_t max_count = 0, max_index = 0;
|
|
for (uint32_t i = 0; i < num_syms * num_syms; i++)
|
|
if (m_hist[i] > max_count)
|
|
max_count = m_hist[i], max_index = i;
|
|
|
|
uint32_t a = max_index / num_syms, b = max_index % num_syms;
|
|
|
|
const uint32_t ofs = m_entries_picked.size();
|
|
|
|
m_entries_picked.push_back(a);
|
|
m_entries_picked.push_back(b);
|
|
|
|
for (uint32_t i = 0; i < num_syms; i++)
|
|
if ((i != m_entries_picked[ofs + 1]) && (i != m_entries_picked[ofs]))
|
|
m_entries_to_do.push_back(i);
|
|
|
|
for (uint32_t i = 0; i < m_entries_to_do.size(); i++)
|
|
for (uint32_t j = 0; j < m_entries_picked.size(); j++)
|
|
m_total_count_to_picked[m_entries_to_do[i]] += get_hist(m_entries_to_do[i], m_entries_picked[j], num_syms);
|
|
}
|
|
|
|
void palette_index_reorderer::find_next_entry(uint32_t &best_entry, double &best_count, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight)
|
|
{
|
|
best_entry = 0;
|
|
best_count = 0;
|
|
|
|
for (uint32_t i = 0; i < m_entries_to_do.size(); i++)
|
|
{
|
|
const uint32_t u = m_entries_to_do[i];
|
|
double total_count = m_total_count_to_picked[u];
|
|
|
|
if (pDist_func)
|
|
{
|
|
float w = maximum<float>((*pDist_func)(u, m_entries_picked.front(), pCtx), (*pDist_func)(u, m_entries_picked.back(), pCtx));
|
|
assert((w >= 0.0f) && (w <= 1.0f));
|
|
total_count = (total_count + 1.0f) * lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, w);
|
|
}
|
|
|
|
if (total_count <= best_count)
|
|
continue;
|
|
|
|
best_entry = i;
|
|
best_count = total_count;
|
|
}
|
|
}
|
|
|
|
float palette_index_reorderer::pick_side(uint32_t num_syms, uint32_t entry_to_move, pEntry_dist_func pDist_func, void *pCtx, float dist_func_weight)
|
|
{
|
|
float which_side = 0;
|
|
|
|
int l_count = 0, r_count = 0;
|
|
for (uint32_t j = 0; j < m_entries_picked.size(); j++)
|
|
{
|
|
const int count = get_hist(entry_to_move, m_entries_picked[j], num_syms), r = ((int)m_entries_picked.size() + 1 - 2 * (j + 1));
|
|
which_side += static_cast<float>(r * count);
|
|
if (r >= 0)
|
|
l_count += r * count;
|
|
else
|
|
r_count += -r * count;
|
|
}
|
|
|
|
if (pDist_func)
|
|
{
|
|
float w_left = lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, (*pDist_func)(entry_to_move, m_entries_picked.front(), pCtx));
|
|
float w_right = lerp(1.0f - dist_func_weight, 1.0f + dist_func_weight, (*pDist_func)(entry_to_move, m_entries_picked.back(), pCtx));
|
|
which_side = w_left * l_count - w_right * r_count;
|
|
}
|
|
return which_side;
|
|
}
|
|
|
|
void image_metrics::calc(const imagef& a, const imagef& b, uint32_t first_chan, uint32_t total_chans, bool avg_comp_error, bool log)
|
|
{
|
|
assert((first_chan < 4U) && (first_chan + total_chans <= 4U));
|
|
|
|
const uint32_t width = basisu::minimum(a.get_width(), b.get_width());
|
|
const uint32_t height = basisu::minimum(a.get_height(), b.get_height());
|
|
|
|
double max_e = -1e+30f;
|
|
double sum = 0.0f, sum_sqr = 0.0f;
|
|
|
|
m_has_neg = false;
|
|
m_any_abnormal = false;
|
|
m_hf_mag_overflow = false;
|
|
|
|
for (uint32_t y = 0; y < height; y++)
|
|
{
|
|
for (uint32_t x = 0; x < width; x++)
|
|
{
|
|
const vec4F& ca = a(x, y), &cb = b(x, y);
|
|
|
|
if (total_chans)
|
|
{
|
|
for (uint32_t c = 0; c < total_chans; c++)
|
|
{
|
|
float fa = ca[first_chan + c], fb = cb[first_chan + c];
|
|
|
|
if ((fabs(fa) > basist::MAX_HALF_FLOAT) || (fabs(fb) > basist::MAX_HALF_FLOAT))
|
|
m_hf_mag_overflow = true;
|
|
|
|
if ((fa < 0.0f) || (fb < 0.0f))
|
|
m_has_neg = true;
|
|
|
|
if (std::isinf(fa) || std::isinf(fb) || std::isnan(fa) || std::isnan(fb))
|
|
m_any_abnormal = true;
|
|
|
|
const double delta = fabs(fa - fb);
|
|
max_e = basisu::maximum<double>(max_e, delta);
|
|
|
|
if (log)
|
|
{
|
|
double log2_delta = log2f(basisu::maximum(0.0f, fa) + 1.0f) - log2f(basisu::maximum(0.0f, fb) + 1.0f);
|
|
|
|
sum += fabs(log2_delta);
|
|
sum_sqr += log2_delta * log2_delta;
|
|
}
|
|
else
|
|
{
|
|
sum += fabs(delta);
|
|
sum_sqr += delta * delta;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
for (uint32_t c = 0; c < 3; c++)
|
|
{
|
|
float fa = ca[c], fb = cb[c];
|
|
|
|
if ((fabs(fa) > basist::MAX_HALF_FLOAT) || (fabs(fb) > basist::MAX_HALF_FLOAT))
|
|
m_hf_mag_overflow = true;
|
|
|
|
if ((fa < 0.0f) || (fb < 0.0f))
|
|
m_has_neg = true;
|
|
|
|
if (std::isinf(fa) || std::isinf(fb) || std::isnan(fa) || std::isnan(fb))
|
|
m_any_abnormal = true;
|
|
}
|
|
|
|
double ca_l = get_luminance(ca), cb_l = get_luminance(cb);
|
|
|
|
double delta = fabs(ca_l - cb_l);
|
|
max_e = basisu::maximum(max_e, delta);
|
|
|
|
if (log)
|
|
{
|
|
double log2_delta = log2(basisu::maximum<double>(0.0f, ca_l) + 1.0f) - log2(basisu::maximum<double>(0.0f, cb_l) + 1.0f);
|
|
|
|
sum += fabs(log2_delta);
|
|
sum_sqr += log2_delta * log2_delta;
|
|
}
|
|
else
|
|
{
|
|
sum += delta;
|
|
sum_sqr += delta * delta;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
m_max = (double)(max_e);
|
|
|
|
double total_values = (double)width * (double)height;
|
|
if (avg_comp_error)
|
|
total_values *= (double)clamp<uint32_t>(total_chans, 1, 4);
|
|
|
|
m_mean = (float)(sum / total_values);
|
|
m_mean_squared = (float)(sum_sqr / total_values);
|
|
m_rms = (float)sqrt(sum_sqr / total_values);
|
|
|
|
const double max_val = 1.0f;
|
|
m_psnr = m_rms ? (float)clamp<double>(log10(max_val / m_rms) * 20.0f, 0.0f, 1000.0f) : 1000.0f;
|
|
}
|
|
|
|
void image_metrics::calc_half(const imagef& a, const imagef& b, uint32_t first_chan, uint32_t total_chans, bool avg_comp_error)
|
|
{
|
|
assert(total_chans);
|
|
assert((first_chan < 4U) && (first_chan + total_chans <= 4U));
|
|
|
|
const uint32_t width = basisu::minimum(a.get_width(), b.get_width());
|
|
const uint32_t height = basisu::minimum(a.get_height(), b.get_height());
|
|
|
|
m_has_neg = false;
|
|
m_hf_mag_overflow = false;
|
|
m_any_abnormal = false;
|
|
|
|
uint_vec hist(65536);
|
|
|
|
for (uint32_t y = 0; y < height; y++)
|
|
{
|
|
for (uint32_t x = 0; x < width; x++)
|
|
{
|
|
const vec4F& ca = a(x, y), &cb = b(x, y);
|
|
|
|
for (uint32_t i = 0; i < 4; i++)
|
|
{
|
|
if ((ca[i] < 0.0f) || (cb[i] < 0.0f))
|
|
m_has_neg = true;
|
|
|
|
if ((fabs(ca[i]) > basist::MAX_HALF_FLOAT) || (fabs(cb[i]) > basist::MAX_HALF_FLOAT))
|
|
m_hf_mag_overflow = true;
|
|
|
|
if (std::isnan(ca[i]) || std::isnan(cb[i]) || std::isinf(ca[i]) || std::isinf(cb[i]))
|
|
m_any_abnormal = true;
|
|
}
|
|
|
|
int cah[4] = { basist::float_to_half(ca[0]), basist::float_to_half(ca[1]), basist::float_to_half(ca[2]), basist::float_to_half(ca[3]) };
|
|
int cbh[4] = { basist::float_to_half(cb[0]), basist::float_to_half(cb[1]), basist::float_to_half(cb[2]), basist::float_to_half(cb[3]) };
|
|
|
|
for (uint32_t c = 0; c < total_chans; c++)
|
|
hist[iabs(cah[first_chan + c] - cbh[first_chan + c]) & 65535]++;
|
|
|
|
} // x
|
|
} // y
|
|
|
|
m_max = 0;
|
|
double sum = 0.0f, sum2 = 0.0f;
|
|
for (uint32_t i = 0; i < 65536; i++)
|
|
{
|
|
if (hist[i])
|
|
{
|
|
m_max = basisu::maximum<double>(m_max, (double)i);
|
|
double v = (double)i * (double)hist[i];
|
|
sum += v;
|
|
sum2 += (double)i * v;
|
|
}
|
|
}
|
|
|
|
double total_values = (double)width * (double)height;
|
|
if (avg_comp_error)
|
|
total_values *= (double)clamp<uint32_t>(total_chans, 1, 4);
|
|
|
|
const float max_val = 65535.0f;
|
|
m_mean = (float)clamp<double>(sum / total_values, 0.0f, max_val);
|
|
m_mean_squared = (float)clamp<double>(sum2 / total_values, 0.0f, max_val * max_val);
|
|
m_rms = (float)sqrt(m_mean_squared);
|
|
m_psnr = m_rms ? (float)clamp<double>(log10(max_val / m_rms) * 20.0f, 0.0f, 1000.0f) : 1000.0f;
|
|
}
|
|
|
|
// Alt. variant, same as calc_half(), for validation.
|
|
void image_metrics::calc_half2(const imagef& a, const imagef& b, uint32_t first_chan, uint32_t total_chans, bool avg_comp_error)
|
|
{
|
|
assert(total_chans);
|
|
assert((first_chan < 4U) && (first_chan + total_chans <= 4U));
|
|
|
|
const uint32_t width = basisu::minimum(a.get_width(), b.get_width());
|
|
const uint32_t height = basisu::minimum(a.get_height(), b.get_height());
|
|
|
|
m_has_neg = false;
|
|
m_hf_mag_overflow = false;
|
|
m_any_abnormal = false;
|
|
|
|
double sum = 0.0f, sum2 = 0.0f;
|
|
m_max = 0;
|
|
|
|
for (uint32_t y = 0; y < height; y++)
|
|
{
|
|
for (uint32_t x = 0; x < width; x++)
|
|
{
|
|
const vec4F& ca = a(x, y), & cb = b(x, y);
|
|
|
|
for (uint32_t i = 0; i < 4; i++)
|
|
{
|
|
if ((ca[i] < 0.0f) || (cb[i] < 0.0f))
|
|
m_has_neg = true;
|
|
|
|
if ((fabs(ca[i]) > basist::MAX_HALF_FLOAT) || (fabs(cb[i]) > basist::MAX_HALF_FLOAT))
|
|
m_hf_mag_overflow = true;
|
|
|
|
if (std::isnan(ca[i]) || std::isnan(cb[i]) || std::isinf(ca[i]) || std::isinf(cb[i]))
|
|
m_any_abnormal = true;
|
|
}
|
|
|
|
int cah[4] = { basist::float_to_half(ca[0]), basist::float_to_half(ca[1]), basist::float_to_half(ca[2]), basist::float_to_half(ca[3]) };
|
|
int cbh[4] = { basist::float_to_half(cb[0]), basist::float_to_half(cb[1]), basist::float_to_half(cb[2]), basist::float_to_half(cb[3]) };
|
|
|
|
for (uint32_t c = 0; c < total_chans; c++)
|
|
{
|
|
int diff = iabs(cah[first_chan + c] - cbh[first_chan + c]);
|
|
if (diff)
|
|
m_max = std::max<double>(m_max, (double)diff);
|
|
|
|
sum += diff;
|
|
sum2 += squarei(cah[first_chan + c] - cbh[first_chan + c]);
|
|
}
|
|
|
|
} // x
|
|
} // y
|
|
|
|
double total_values = (double)width * (double)height;
|
|
if (avg_comp_error)
|
|
total_values *= (double)clamp<uint32_t>(total_chans, 1, 4);
|
|
|
|
const float max_val = 65535.0f;
|
|
m_mean = (float)clamp<double>(sum / total_values, 0.0f, max_val);
|
|
m_mean_squared = (float)clamp<double>(sum2 / total_values, 0.0f, max_val * max_val);
|
|
m_rms = (float)sqrt(m_mean_squared);
|
|
m_psnr = m_rms ? (float)clamp<double>(log10(max_val / m_rms) * 20.0f, 0.0f, 1000.0f) : 1000.0f;
|
|
}
|
|
|
|
void image_metrics::calc(const image &a, const image &b, uint32_t first_chan, uint32_t total_chans, bool avg_comp_error, bool use_601_luma)
|
|
{
|
|
assert((first_chan < 4U) && (first_chan + total_chans <= 4U));
|
|
|
|
const uint32_t width = basisu::minimum(a.get_width(), b.get_width());
|
|
const uint32_t height = basisu::minimum(a.get_height(), b.get_height());
|
|
|
|
double hist[256];
|
|
clear_obj(hist);
|
|
|
|
m_has_neg = false;
|
|
m_any_abnormal = false;
|
|
m_hf_mag_overflow = false;
|
|
|
|
for (uint32_t y = 0; y < height; y++)
|
|
{
|
|
for (uint32_t x = 0; x < width; x++)
|
|
{
|
|
const color_rgba &ca = a(x, y), &cb = b(x, y);
|
|
|
|
if (total_chans)
|
|
{
|
|
for (uint32_t c = 0; c < total_chans; c++)
|
|
hist[iabs(ca[first_chan + c] - cb[first_chan + c])]++;
|
|
}
|
|
else
|
|
{
|
|
if (use_601_luma)
|
|
hist[iabs(ca.get_601_luma() - cb.get_601_luma())]++;
|
|
else
|
|
hist[iabs(ca.get_709_luma() - cb.get_709_luma())]++;
|
|
}
|
|
}
|
|
}
|
|
|
|
m_max = 0;
|
|
double sum = 0.0f, sum2 = 0.0f;
|
|
for (uint32_t i = 0; i < 256; i++)
|
|
{
|
|
if (hist[i])
|
|
{
|
|
m_max = basisu::maximum<double>(m_max, (double)i);
|
|
double v = i * hist[i];
|
|
sum += v;
|
|
sum2 += i * v;
|
|
}
|
|
}
|
|
|
|
double total_values = (double)width * (double)height;
|
|
if (avg_comp_error)
|
|
total_values *= (double)clamp<uint32_t>(total_chans, 1, 4);
|
|
|
|
m_mean = (float)clamp<double>(sum / total_values, 0.0f, 255.0);
|
|
m_mean_squared = (float)clamp<double>(sum2 / total_values, 0.0f, 255.0f * 255.0f);
|
|
m_rms = (float)sqrt(m_mean_squared);
|
|
m_psnr = m_rms ? (float)clamp<double>(log10(255.0 / m_rms) * 20.0f, 0.0f, 100.0f) : 100.0f;
|
|
}
|
|
|
|
void fill_buffer_with_random_bytes(void *pBuf, size_t size, uint32_t seed)
|
|
{
|
|
rand r(seed);
|
|
|
|
uint8_t *pDst = static_cast<uint8_t *>(pBuf);
|
|
|
|
while (size >= sizeof(uint32_t))
|
|
{
|
|
*(uint32_t *)pDst = r.urand32();
|
|
pDst += sizeof(uint32_t);
|
|
size -= sizeof(uint32_t);
|
|
}
|
|
|
|
while (size)
|
|
{
|
|
*pDst++ = r.byte();
|
|
size--;
|
|
}
|
|
}
|
|
|
|
uint32_t hash_hsieh(const uint8_t *pBuf, size_t len)
|
|
{
|
|
if (!pBuf || !len)
|
|
return 0;
|
|
|
|
uint32_t h = static_cast<uint32_t>(len);
|
|
|
|
const uint32_t bytes_left = len & 3;
|
|
len >>= 2;
|
|
|
|
while (len--)
|
|
{
|
|
const uint16_t *pWords = reinterpret_cast<const uint16_t *>(pBuf);
|
|
|
|
h += pWords[0];
|
|
|
|
const uint32_t t = (pWords[1] << 11) ^ h;
|
|
h = (h << 16) ^ t;
|
|
|
|
pBuf += sizeof(uint32_t);
|
|
|
|
h += h >> 11;
|
|
}
|
|
|
|
switch (bytes_left)
|
|
{
|
|
case 1:
|
|
h += *reinterpret_cast<const signed char*>(pBuf);
|
|
h ^= h << 10;
|
|
h += h >> 1;
|
|
break;
|
|
case 2:
|
|
h += *reinterpret_cast<const uint16_t *>(pBuf);
|
|
h ^= h << 11;
|
|
h += h >> 17;
|
|
break;
|
|
case 3:
|
|
h += *reinterpret_cast<const uint16_t *>(pBuf);
|
|
h ^= h << 16;
|
|
h ^= (static_cast<signed char>(pBuf[sizeof(uint16_t)])) << 18;
|
|
h += h >> 11;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
h ^= h << 3;
|
|
h += h >> 5;
|
|
h ^= h << 4;
|
|
h += h >> 17;
|
|
h ^= h << 25;
|
|
h += h >> 6;
|
|
|
|
return h;
|
|
}
|
|
|
|
job_pool::job_pool(uint32_t num_threads) :
|
|
m_num_active_jobs(0),
|
|
m_kill_flag(false)
|
|
{
|
|
assert(num_threads >= 1U);
|
|
|
|
debug_printf("job_pool::job_pool: %u total threads\n", num_threads);
|
|
|
|
if (num_threads > 1)
|
|
{
|
|
m_threads.resize(num_threads - 1);
|
|
|
|
for (int i = 0; i < ((int)num_threads - 1); i++)
|
|
m_threads[i] = std::thread([this, i] { job_thread(i); });
|
|
}
|
|
}
|
|
|
|
job_pool::~job_pool()
|
|
{
|
|
debug_printf("job_pool::~job_pool\n");
|
|
|
|
// Notify all workers that they need to die right now.
|
|
m_kill_flag = true;
|
|
|
|
m_has_work.notify_all();
|
|
|
|
// Wait for all workers to die.
|
|
for (uint32_t i = 0; i < m_threads.size(); i++)
|
|
m_threads[i].join();
|
|
}
|
|
|
|
void job_pool::add_job(const std::function<void()>& job)
|
|
{
|
|
std::unique_lock<std::mutex> lock(m_mutex);
|
|
|
|
m_queue.emplace_back(job);
|
|
|
|
const size_t queue_size = m_queue.size();
|
|
|
|
lock.unlock();
|
|
|
|
if (queue_size > 1)
|
|
m_has_work.notify_one();
|
|
}
|
|
|
|
void job_pool::add_job(std::function<void()>&& job)
|
|
{
|
|
std::unique_lock<std::mutex> lock(m_mutex);
|
|
|
|
m_queue.emplace_back(std::move(job));
|
|
|
|
const size_t queue_size = m_queue.size();
|
|
|
|
lock.unlock();
|
|
|
|
if (queue_size > 1)
|
|
{
|
|
m_has_work.notify_one();
|
|
}
|
|
}
|
|
|
|
void job_pool::wait_for_all()
|
|
{
|
|
std::unique_lock<std::mutex> lock(m_mutex);
|
|
|
|
// Drain the job queue on the calling thread.
|
|
while (!m_queue.empty())
|
|
{
|
|
std::function<void()> job(m_queue.back());
|
|
m_queue.pop_back();
|
|
|
|
lock.unlock();
|
|
|
|
job();
|
|
|
|
lock.lock();
|
|
}
|
|
|
|
// The queue is empty, now wait for all active jobs to finish up.
|
|
m_no_more_jobs.wait(lock, [this]{ return !m_num_active_jobs; } );
|
|
}
|
|
|
|
void job_pool::job_thread(uint32_t index)
|
|
{
|
|
BASISU_NOTE_UNUSED(index);
|
|
//debug_printf("job_pool::job_thread: starting %u\n", index);
|
|
|
|
while (true)
|
|
{
|
|
std::unique_lock<std::mutex> lock(m_mutex);
|
|
|
|
// Wait for any jobs to be issued.
|
|
m_has_work.wait(lock, [this] { return m_kill_flag || m_queue.size(); } );
|
|
|
|
// Check to see if we're supposed to exit.
|
|
if (m_kill_flag)
|
|
break;
|
|
|
|
// Get the job and execute it.
|
|
std::function<void()> job(m_queue.back());
|
|
m_queue.pop_back();
|
|
|
|
++m_num_active_jobs;
|
|
|
|
lock.unlock();
|
|
|
|
job();
|
|
|
|
lock.lock();
|
|
|
|
--m_num_active_jobs;
|
|
|
|
// Now check if there are no more jobs remaining.
|
|
const bool all_done = m_queue.empty() && !m_num_active_jobs;
|
|
|
|
lock.unlock();
|
|
|
|
if (all_done)
|
|
m_no_more_jobs.notify_all();
|
|
}
|
|
|
|
//debug_printf("job_pool::job_thread: exiting\n");
|
|
}
|
|
|
|
// .TGA image loading
|
|
#pragma pack(push)
|
|
#pragma pack(1)
|
|
struct tga_header
|
|
{
|
|
uint8_t m_id_len;
|
|
uint8_t m_cmap;
|
|
uint8_t m_type;
|
|
packed_uint<2> m_cmap_first;
|
|
packed_uint<2> m_cmap_len;
|
|
uint8_t m_cmap_bpp;
|
|
packed_uint<2> m_x_org;
|
|
packed_uint<2> m_y_org;
|
|
packed_uint<2> m_width;
|
|
packed_uint<2> m_height;
|
|
uint8_t m_depth;
|
|
uint8_t m_desc;
|
|
};
|
|
#pragma pack(pop)
|
|
|
|
const uint32_t MAX_TGA_IMAGE_SIZE = 16384;
|
|
|
|
enum tga_image_type
|
|
{
|
|
cITPalettized = 1,
|
|
cITRGB = 2,
|
|
cITGrayscale = 3
|
|
};
|
|
|
|
uint8_t *read_tga(const uint8_t *pBuf, uint32_t buf_size, int &width, int &height, int &n_chans)
|
|
{
|
|
width = 0;
|
|
height = 0;
|
|
n_chans = 0;
|
|
|
|
if (buf_size <= sizeof(tga_header))
|
|
return nullptr;
|
|
|
|
const tga_header &hdr = *reinterpret_cast<const tga_header *>(pBuf);
|
|
|
|
if ((!hdr.m_width) || (!hdr.m_height) || (hdr.m_width > MAX_TGA_IMAGE_SIZE) || (hdr.m_height > MAX_TGA_IMAGE_SIZE))
|
|
return nullptr;
|
|
|
|
if (hdr.m_desc >> 6)
|
|
return nullptr;
|
|
|
|
// Simple validation
|
|
if ((hdr.m_cmap != 0) && (hdr.m_cmap != 1))
|
|
return nullptr;
|
|
|
|
if (hdr.m_cmap)
|
|
{
|
|
if ((hdr.m_cmap_bpp == 0) || (hdr.m_cmap_bpp > 32))
|
|
return nullptr;
|
|
|
|
// Nobody implements CMapFirst correctly, so we're not supporting it. Never seen it used, either.
|
|
if (hdr.m_cmap_first != 0)
|
|
return nullptr;
|
|
}
|
|
|
|
const bool x_flipped = (hdr.m_desc & 0x10) != 0;
|
|
const bool y_flipped = (hdr.m_desc & 0x20) == 0;
|
|
|
|
bool rle_flag = false;
|
|
int file_image_type = hdr.m_type;
|
|
if (file_image_type > 8)
|
|
{
|
|
file_image_type -= 8;
|
|
rle_flag = true;
|
|
}
|
|
|
|
const tga_image_type image_type = static_cast<tga_image_type>(file_image_type);
|
|
|
|
switch (file_image_type)
|
|
{
|
|
case cITRGB:
|
|
if (hdr.m_depth == 8)
|
|
return nullptr;
|
|
break;
|
|
case cITPalettized:
|
|
if ((hdr.m_depth != 8) || (hdr.m_cmap != 1) || (hdr.m_cmap_len == 0))
|
|
return nullptr;
|
|
break;
|
|
case cITGrayscale:
|
|
if ((hdr.m_cmap != 0) || (hdr.m_cmap_len != 0))
|
|
return nullptr;
|
|
if ((hdr.m_depth != 8) && (hdr.m_depth != 16))
|
|
return nullptr;
|
|
break;
|
|
default:
|
|
return nullptr;
|
|
}
|
|
|
|
uint32_t tga_bytes_per_pixel = 0;
|
|
|
|
switch (hdr.m_depth)
|
|
{
|
|
case 32:
|
|
tga_bytes_per_pixel = 4;
|
|
n_chans = 4;
|
|
break;
|
|
case 24:
|
|
tga_bytes_per_pixel = 3;
|
|
n_chans = 3;
|
|
break;
|
|
case 16:
|
|
case 15:
|
|
tga_bytes_per_pixel = 2;
|
|
// For compatibility with stb_image_write.h
|
|
n_chans = ((file_image_type == cITGrayscale) && (hdr.m_depth == 16)) ? 4 : 3;
|
|
break;
|
|
case 8:
|
|
tga_bytes_per_pixel = 1;
|
|
// For palettized RGBA support, which both FreeImage and stb_image support.
|
|
n_chans = ((file_image_type == cITPalettized) && (hdr.m_cmap_bpp == 32)) ? 4 : 3;
|
|
break;
|
|
default:
|
|
return nullptr;
|
|
}
|
|
|
|
//const uint32_t bytes_per_line = hdr.m_width * tga_bytes_per_pixel;
|
|
|
|
const uint8_t *pSrc = pBuf + sizeof(tga_header);
|
|
uint32_t bytes_remaining = buf_size - sizeof(tga_header);
|
|
|
|
if (hdr.m_id_len)
|
|
{
|
|
if (bytes_remaining < hdr.m_id_len)
|
|
return nullptr;
|
|
pSrc += hdr.m_id_len;
|
|
bytes_remaining += hdr.m_id_len;
|
|
}
|
|
|
|
color_rgba pal[256];
|
|
for (uint32_t i = 0; i < 256; i++)
|
|
pal[i].set(0, 0, 0, 255);
|
|
|
|
if ((hdr.m_cmap) && (hdr.m_cmap_len))
|
|
{
|
|
if (image_type == cITPalettized)
|
|
{
|
|
// Note I cannot find any files using 32bpp palettes in the wild (never seen any in ~30 years).
|
|
if ( ((hdr.m_cmap_bpp != 32) && (hdr.m_cmap_bpp != 24) && (hdr.m_cmap_bpp != 15) && (hdr.m_cmap_bpp != 16)) || (hdr.m_cmap_len > 256) )
|
|
return nullptr;
|
|
|
|
if (hdr.m_cmap_bpp == 32)
|
|
{
|
|
const uint32_t pal_size = hdr.m_cmap_len * 4;
|
|
if (bytes_remaining < pal_size)
|
|
return nullptr;
|
|
|
|
for (uint32_t i = 0; i < hdr.m_cmap_len; i++)
|
|
{
|
|
pal[i].r = pSrc[i * 4 + 2];
|
|
pal[i].g = pSrc[i * 4 + 1];
|
|
pal[i].b = pSrc[i * 4 + 0];
|
|
pal[i].a = pSrc[i * 4 + 3];
|
|
}
|
|
|
|
bytes_remaining -= pal_size;
|
|
pSrc += pal_size;
|
|
}
|
|
else if (hdr.m_cmap_bpp == 24)
|
|
{
|
|
const uint32_t pal_size = hdr.m_cmap_len * 3;
|
|
if (bytes_remaining < pal_size)
|
|
return nullptr;
|
|
|
|
for (uint32_t i = 0; i < hdr.m_cmap_len; i++)
|
|
{
|
|
pal[i].r = pSrc[i * 3 + 2];
|
|
pal[i].g = pSrc[i * 3 + 1];
|
|
pal[i].b = pSrc[i * 3 + 0];
|
|
pal[i].a = 255;
|
|
}
|
|
|
|
bytes_remaining -= pal_size;
|
|
pSrc += pal_size;
|
|
}
|
|
else
|
|
{
|
|
const uint32_t pal_size = hdr.m_cmap_len * 2;
|
|
if (bytes_remaining < pal_size)
|
|
return nullptr;
|
|
|
|
for (uint32_t i = 0; i < hdr.m_cmap_len; i++)
|
|
{
|
|
const uint32_t v = pSrc[i * 2 + 0] | (pSrc[i * 2 + 1] << 8);
|
|
|
|
pal[i].r = (((v >> 10) & 31) * 255 + 15) / 31;
|
|
pal[i].g = (((v >> 5) & 31) * 255 + 15) / 31;
|
|
pal[i].b = ((v & 31) * 255 + 15) / 31;
|
|
pal[i].a = 255;
|
|
}
|
|
|
|
bytes_remaining -= pal_size;
|
|
pSrc += pal_size;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
const uint32_t bytes_to_skip = (hdr.m_cmap_bpp >> 3) * hdr.m_cmap_len;
|
|
if (bytes_remaining < bytes_to_skip)
|
|
return nullptr;
|
|
pSrc += bytes_to_skip;
|
|
bytes_remaining += bytes_to_skip;
|
|
}
|
|
}
|
|
|
|
width = hdr.m_width;
|
|
height = hdr.m_height;
|
|
|
|
const uint32_t source_pitch = width * tga_bytes_per_pixel;
|
|
const uint32_t dest_pitch = width * n_chans;
|
|
|
|
uint8_t *pImage = (uint8_t *)malloc(dest_pitch * height);
|
|
if (!pImage)
|
|
return nullptr;
|
|
|
|
std::vector<uint8_t> input_line_buf;
|
|
if (rle_flag)
|
|
input_line_buf.resize(source_pitch);
|
|
|
|
int run_type = 0, run_remaining = 0;
|
|
uint8_t run_pixel[4];
|
|
memset(run_pixel, 0, sizeof(run_pixel));
|
|
|
|
for (int y = 0; y < height; y++)
|
|
{
|
|
const uint8_t *pLine_data;
|
|
|
|
if (rle_flag)
|
|
{
|
|
int pixels_remaining = width;
|
|
uint8_t *pDst = &input_line_buf[0];
|
|
|
|
do
|
|
{
|
|
if (!run_remaining)
|
|
{
|
|
if (bytes_remaining < 1)
|
|
{
|
|
free(pImage);
|
|
return nullptr;
|
|
}
|
|
|
|
int v = *pSrc++;
|
|
bytes_remaining--;
|
|
|
|
run_type = v & 0x80;
|
|
run_remaining = (v & 0x7F) + 1;
|
|
|
|
if (run_type)
|
|
{
|
|
if (bytes_remaining < tga_bytes_per_pixel)
|
|
{
|
|
free(pImage);
|
|
return nullptr;
|
|
}
|
|
|
|
memcpy(run_pixel, pSrc, tga_bytes_per_pixel);
|
|
pSrc += tga_bytes_per_pixel;
|
|
bytes_remaining -= tga_bytes_per_pixel;
|
|
}
|
|
}
|
|
|
|
const uint32_t n = basisu::minimum<uint32_t>(pixels_remaining, run_remaining);
|
|
pixels_remaining -= n;
|
|
run_remaining -= n;
|
|
|
|
if (run_type)
|
|
{
|
|
for (uint32_t i = 0; i < n; i++)
|
|
for (uint32_t j = 0; j < tga_bytes_per_pixel; j++)
|
|
*pDst++ = run_pixel[j];
|
|
}
|
|
else
|
|
{
|
|
const uint32_t bytes_wanted = n * tga_bytes_per_pixel;
|
|
|
|
if (bytes_remaining < bytes_wanted)
|
|
{
|
|
free(pImage);
|
|
return nullptr;
|
|
}
|
|
|
|
memcpy(pDst, pSrc, bytes_wanted);
|
|
pDst += bytes_wanted;
|
|
|
|
pSrc += bytes_wanted;
|
|
bytes_remaining -= bytes_wanted;
|
|
}
|
|
|
|
} while (pixels_remaining);
|
|
|
|
assert((pDst - &input_line_buf[0]) == (int)(width * tga_bytes_per_pixel));
|
|
|
|
pLine_data = &input_line_buf[0];
|
|
}
|
|
else
|
|
{
|
|
if (bytes_remaining < source_pitch)
|
|
{
|
|
free(pImage);
|
|
return nullptr;
|
|
}
|
|
|
|
pLine_data = pSrc;
|
|
bytes_remaining -= source_pitch;
|
|
pSrc += source_pitch;
|
|
}
|
|
|
|
// Convert to 24bpp RGB or 32bpp RGBA.
|
|
uint8_t *pDst = pImage + (y_flipped ? (height - 1 - y) : y) * dest_pitch + (x_flipped ? (width - 1) * n_chans : 0);
|
|
const int dst_stride = x_flipped ? -((int)n_chans) : n_chans;
|
|
|
|
switch (hdr.m_depth)
|
|
{
|
|
case 32:
|
|
assert(tga_bytes_per_pixel == 4 && n_chans == 4);
|
|
for (int i = 0; i < width; i++, pLine_data += 4, pDst += dst_stride)
|
|
{
|
|
pDst[0] = pLine_data[2];
|
|
pDst[1] = pLine_data[1];
|
|
pDst[2] = pLine_data[0];
|
|
pDst[3] = pLine_data[3];
|
|
}
|
|
break;
|
|
case 24:
|
|
assert(tga_bytes_per_pixel == 3 && n_chans == 3);
|
|
for (int i = 0; i < width; i++, pLine_data += 3, pDst += dst_stride)
|
|
{
|
|
pDst[0] = pLine_data[2];
|
|
pDst[1] = pLine_data[1];
|
|
pDst[2] = pLine_data[0];
|
|
}
|
|
break;
|
|
case 16:
|
|
case 15:
|
|
if (image_type == cITRGB)
|
|
{
|
|
assert(tga_bytes_per_pixel == 2 && n_chans == 3);
|
|
for (int i = 0; i < width; i++, pLine_data += 2, pDst += dst_stride)
|
|
{
|
|
const uint32_t v = pLine_data[0] | (pLine_data[1] << 8);
|
|
pDst[0] = (((v >> 10) & 31) * 255 + 15) / 31;
|
|
pDst[1] = (((v >> 5) & 31) * 255 + 15) / 31;
|
|
pDst[2] = ((v & 31) * 255 + 15) / 31;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
assert(image_type == cITGrayscale && tga_bytes_per_pixel == 2 && n_chans == 4);
|
|
for (int i = 0; i < width; i++, pLine_data += 2, pDst += dst_stride)
|
|
{
|
|
pDst[0] = pLine_data[0];
|
|
pDst[1] = pLine_data[0];
|
|
pDst[2] = pLine_data[0];
|
|
pDst[3] = pLine_data[1];
|
|
}
|
|
}
|
|
break;
|
|
case 8:
|
|
assert(tga_bytes_per_pixel == 1);
|
|
if (image_type == cITPalettized)
|
|
{
|
|
if (hdr.m_cmap_bpp == 32)
|
|
{
|
|
assert(n_chans == 4);
|
|
for (int i = 0; i < width; i++, pLine_data++, pDst += dst_stride)
|
|
{
|
|
const uint32_t c = *pLine_data;
|
|
pDst[0] = pal[c].r;
|
|
pDst[1] = pal[c].g;
|
|
pDst[2] = pal[c].b;
|
|
pDst[3] = pal[c].a;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
assert(n_chans == 3);
|
|
for (int i = 0; i < width; i++, pLine_data++, pDst += dst_stride)
|
|
{
|
|
const uint32_t c = *pLine_data;
|
|
pDst[0] = pal[c].r;
|
|
pDst[1] = pal[c].g;
|
|
pDst[2] = pal[c].b;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
assert(n_chans == 3);
|
|
for (int i = 0; i < width; i++, pLine_data++, pDst += dst_stride)
|
|
{
|
|
const uint8_t c = *pLine_data;
|
|
pDst[0] = c;
|
|
pDst[1] = c;
|
|
pDst[2] = c;
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
} // y
|
|
|
|
return pImage;
|
|
}
|
|
|
|
uint8_t *read_tga(const char *pFilename, int &width, int &height, int &n_chans)
|
|
{
|
|
width = height = n_chans = 0;
|
|
|
|
uint8_vec filedata;
|
|
if (!read_file_to_vec(pFilename, filedata))
|
|
return nullptr;
|
|
|
|
if (!filedata.size() || (filedata.size() > UINT32_MAX))
|
|
return nullptr;
|
|
|
|
return read_tga(&filedata[0], (uint32_t)filedata.size(), width, height, n_chans);
|
|
}
|
|
|
|
static inline void hdr_convert(const color_rgba& rgbe, vec4F& c)
|
|
{
|
|
if (rgbe[3] != 0)
|
|
{
|
|
float scale = ldexp(1.0f, rgbe[3] - 128 - 8);
|
|
c.set((float)rgbe[0] * scale, (float)rgbe[1] * scale, (float)rgbe[2] * scale, 1.0f);
|
|
}
|
|
else
|
|
{
|
|
c.set(0.0f, 0.0f, 0.0f, 1.0f);
|
|
}
|
|
}
|
|
|
|
bool string_begins_with(const std::string& str, const char* pPhrase)
|
|
{
|
|
const size_t str_len = str.size();
|
|
|
|
const size_t phrase_len = strlen(pPhrase);
|
|
assert(phrase_len);
|
|
|
|
if (str_len >= phrase_len)
|
|
{
|
|
#ifdef _MSC_VER
|
|
if (_strnicmp(pPhrase, str.c_str(), phrase_len) == 0)
|
|
#else
|
|
if (strncasecmp(pPhrase, str.c_str(), phrase_len) == 0)
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
// Radiance RGBE (.HDR) image reading.
|
|
// This code tries to preserve the original logic in Radiance's ray/src/common/color.c code:
|
|
// https://www.radiance-online.org/cgi-bin/viewcvs.cgi/ray/src/common/color.c?revision=2.26&view=markup&sortby=log
|
|
// Also see: https://flipcode.com/archives/HDR_Image_Reader.shtml.
|
|
// https://github.com/LuminanceHDR/LuminanceHDR/blob/master/src/Libpfs/io/rgbereader.cpp.
|
|
// https://radsite.lbl.gov/radiance/refer/filefmts.pdf
|
|
// Buggy readers:
|
|
// stb_image.h: appears to be a clone of rgbe.c, but with goto's (doesn't support old format files, doesn't support mixture of RLE/non-RLE scanlines)
|
|
// http://www.graphics.cornell.edu/~bjw/rgbe.html - rgbe.c/h
|
|
// http://www.graphics.cornell.edu/online/formats/rgbe/ - rgbe.c/.h - buggy
|
|
bool read_rgbe(const uint8_vec &filedata, imagef& img, rgbe_header_info& hdr_info)
|
|
{
|
|
hdr_info.clear();
|
|
|
|
const uint32_t MAX_SUPPORTED_DIM = 65536;
|
|
|
|
if (filedata.size() < 4)
|
|
return false;
|
|
|
|
// stb_image.h checks for the string "#?RADIANCE" or "#?RGBE" in the header.
|
|
// The original Radiance header code doesn't care about the specific string.
|
|
// opencv's reader only checks for "#?", so that's what we're going to do.
|
|
if ((filedata[0] != '#') || (filedata[1] != '?'))
|
|
return false;
|
|
|
|
//uint32_t width = 0, height = 0;
|
|
bool is_rgbe = false;
|
|
size_t cur_ofs = 0;
|
|
|
|
// Parse the lines until we encounter a blank line.
|
|
std::string cur_line;
|
|
for (; ; )
|
|
{
|
|
if (cur_ofs >= filedata.size())
|
|
return false;
|
|
|
|
const uint32_t HEADER_TOO_BIG_SIZE = 4096;
|
|
if (cur_ofs >= HEADER_TOO_BIG_SIZE)
|
|
{
|
|
// Header seems too large - something is likely wrong. Return failure.
|
|
return false;
|
|
}
|
|
|
|
uint8_t c = filedata[cur_ofs++];
|
|
|
|
if (c == '\n')
|
|
{
|
|
if (!cur_line.size())
|
|
break;
|
|
|
|
if ((cur_line[0] == '#') && (!string_begins_with(cur_line, "#?")) && (!hdr_info.m_program.size()))
|
|
{
|
|
cur_line.erase(0, 1);
|
|
while (cur_line.size() && (cur_line[0] == ' '))
|
|
cur_line.erase(0, 1);
|
|
|
|
hdr_info.m_program = cur_line;
|
|
}
|
|
else if (string_begins_with(cur_line, "EXPOSURE=") && (cur_line.size() > 9))
|
|
{
|
|
hdr_info.m_exposure = atof(cur_line.c_str() + 9);
|
|
hdr_info.m_has_exposure = true;
|
|
}
|
|
else if (string_begins_with(cur_line, "GAMMA=") && (cur_line.size() > 6))
|
|
{
|
|
hdr_info.m_exposure = atof(cur_line.c_str() + 6);
|
|
hdr_info.m_has_gamma = true;
|
|
}
|
|
else if (cur_line == "FORMAT=32-bit_rle_rgbe")
|
|
{
|
|
is_rgbe = true;
|
|
}
|
|
|
|
cur_line.resize(0);
|
|
}
|
|
else
|
|
cur_line.push_back((char)c);
|
|
}
|
|
|
|
if (!is_rgbe)
|
|
return false;
|
|
|
|
// Assume and require the final line to have the image's dimensions. We're not supporting flipping.
|
|
for (; ; )
|
|
{
|
|
if (cur_ofs >= filedata.size())
|
|
return false;
|
|
uint8_t c = filedata[cur_ofs++];
|
|
if (c == '\n')
|
|
break;
|
|
cur_line.push_back((char)c);
|
|
}
|
|
|
|
int comp[2] = { 1, 0 }; // y, x (major, minor)
|
|
int dir[2] = { -1, 1 }; // -1, 1, (major, minor), for y -1=up
|
|
uint32_t major_dim = 0, minor_dim = 0;
|
|
|
|
// Parse the dimension string, normally it'll be "-Y # +X #" (major, minor), rarely it differs
|
|
for (uint32_t d = 0; d < 2; d++) // 0=major, 1=minor
|
|
{
|
|
const bool is_neg_x = (strncmp(&cur_line[0], "-X ", 3) == 0);
|
|
const bool is_pos_x = (strncmp(&cur_line[0], "+X ", 3) == 0);
|
|
const bool is_x = is_neg_x || is_pos_x;
|
|
|
|
const bool is_neg_y = (strncmp(&cur_line[0], "-Y ", 3) == 0);
|
|
const bool is_pos_y = (strncmp(&cur_line[0], "+Y ", 3) == 0);
|
|
const bool is_y = is_neg_y || is_pos_y;
|
|
|
|
if (cur_line.size() < 3)
|
|
return false;
|
|
|
|
if (!is_x && !is_y)
|
|
return false;
|
|
|
|
comp[d] = is_x ? 0 : 1;
|
|
dir[d] = (is_neg_x || is_neg_y) ? -1 : 1;
|
|
|
|
uint32_t& dim = d ? minor_dim : major_dim;
|
|
|
|
cur_line.erase(0, 3);
|
|
|
|
while (cur_line.size())
|
|
{
|
|
char c = cur_line[0];
|
|
if (c != ' ')
|
|
break;
|
|
cur_line.erase(0, 1);
|
|
}
|
|
|
|
bool has_digits = false;
|
|
while (cur_line.size())
|
|
{
|
|
char c = cur_line[0];
|
|
cur_line.erase(0, 1);
|
|
|
|
if (c == ' ')
|
|
break;
|
|
|
|
if ((c < '0') || (c > '9'))
|
|
return false;
|
|
|
|
const uint32_t prev_dim = dim;
|
|
dim = dim * 10 + (c - '0');
|
|
if (dim < prev_dim)
|
|
return false;
|
|
|
|
has_digits = true;
|
|
}
|
|
if (!has_digits)
|
|
return false;
|
|
|
|
if ((dim < 1) || (dim > MAX_SUPPORTED_DIM))
|
|
return false;
|
|
}
|
|
|
|
// temp image: width=minor, height=major
|
|
img.resize(minor_dim, major_dim);
|
|
|
|
std::vector<color_rgba> temp_scanline(minor_dim);
|
|
|
|
// Read the scanlines.
|
|
for (uint32_t y = 0; y < major_dim; y++)
|
|
{
|
|
vec4F* pDst = &img(0, y);
|
|
|
|
if ((filedata.size() - cur_ofs) < 4)
|
|
return false;
|
|
|
|
// Determine if the line uses the new or old format. See the logic in color.c.
|
|
bool old_decrunch = false;
|
|
if ((minor_dim < 8) || (minor_dim > 0x7FFF))
|
|
{
|
|
// Line is too short or long; must be old format.
|
|
old_decrunch = true;
|
|
}
|
|
else if (filedata[cur_ofs] != 2)
|
|
{
|
|
// R is not 2, must be old format
|
|
old_decrunch = true;
|
|
}
|
|
else
|
|
{
|
|
// c[0]/red is 2.Check GB and E for validity.
|
|
color_rgba c;
|
|
memcpy(&c, &filedata[cur_ofs], 4);
|
|
|
|
if ((c[1] != 2) || (c[2] & 0x80))
|
|
{
|
|
// G isn't 2, or the high bit of B is set which is impossible (image's > 0x7FFF pixels can't get here). Use old format.
|
|
old_decrunch = true;
|
|
}
|
|
else
|
|
{
|
|
// Check B and E. If this isn't the minor_dim in network order, something is wrong. The pixel would also be denormalized, and invalid.
|
|
uint32_t w = (c[2] << 8) | c[3];
|
|
if (w != minor_dim)
|
|
return false;
|
|
|
|
cur_ofs += 4;
|
|
}
|
|
}
|
|
|
|
if (old_decrunch)
|
|
{
|
|
uint32_t rshift = 0, x = 0;
|
|
|
|
while (x < minor_dim)
|
|
{
|
|
if ((filedata.size() - cur_ofs) < 4)
|
|
return false;
|
|
|
|
color_rgba c;
|
|
memcpy(&c, &filedata[cur_ofs], 4);
|
|
cur_ofs += 4;
|
|
|
|
if ((c[0] == 1) && (c[1] == 1) && (c[2] == 1))
|
|
{
|
|
// We'll allow RLE matches to cross scanlines, but not on the very first pixel.
|
|
if ((!x) && (!y))
|
|
return false;
|
|
|
|
const uint32_t run_len = c[3] << rshift;
|
|
const vec4F run_color(pDst[-1]);
|
|
|
|
if ((x + run_len) > minor_dim)
|
|
return false;
|
|
|
|
for (uint32_t i = 0; i < run_len; i++)
|
|
*pDst++ = run_color;
|
|
|
|
rshift += 8;
|
|
x += run_len;
|
|
}
|
|
else
|
|
{
|
|
rshift = 0;
|
|
|
|
hdr_convert(c, *pDst);
|
|
pDst++;
|
|
x++;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
// New format
|
|
for (uint32_t s = 0; s < 4; s++)
|
|
{
|
|
uint32_t x_ofs = 0;
|
|
while (x_ofs < minor_dim)
|
|
{
|
|
uint32_t num_remaining = minor_dim - x_ofs;
|
|
|
|
if (cur_ofs >= filedata.size())
|
|
return false;
|
|
|
|
uint8_t count = filedata[cur_ofs++];
|
|
if (count > 128)
|
|
{
|
|
count -= 128;
|
|
if (count > num_remaining)
|
|
return false;
|
|
|
|
if (cur_ofs >= filedata.size())
|
|
return false;
|
|
const uint8_t val = filedata[cur_ofs++];
|
|
|
|
for (uint32_t i = 0; i < count; i++)
|
|
temp_scanline[x_ofs + i][s] = val;
|
|
|
|
x_ofs += count;
|
|
}
|
|
else
|
|
{
|
|
if ((!count) || (count > num_remaining))
|
|
return false;
|
|
|
|
for (uint32_t i = 0; i < count; i++)
|
|
{
|
|
if (cur_ofs >= filedata.size())
|
|
return false;
|
|
const uint8_t val = filedata[cur_ofs++];
|
|
|
|
temp_scanline[x_ofs + i][s] = val;
|
|
}
|
|
|
|
x_ofs += count;
|
|
}
|
|
} // while (x_ofs < minor_dim)
|
|
} // c
|
|
|
|
// Convert all the RGBE pixels to float now
|
|
for (uint32_t x = 0; x < minor_dim; x++, pDst++)
|
|
hdr_convert(temp_scanline[x], *pDst);
|
|
|
|
assert((pDst - &img(0, y)) == (int)minor_dim);
|
|
|
|
} // y
|
|
|
|
// at here:
|
|
// img(width,height)=image pixels as read from file, x=minor axis, y=major axis
|
|
// width=minor axis dimension
|
|
// height=major axis dimension
|
|
// in file, pixels are emitted in minor order, them major (so major=scanlines in the file)
|
|
|
|
imagef final_img;
|
|
if (comp[0] == 0) // if major axis is X
|
|
final_img.resize(major_dim, minor_dim);
|
|
else // major axis is Y, minor is X
|
|
final_img.resize(minor_dim, major_dim);
|
|
|
|
// TODO: optimize the identity case
|
|
for (uint32_t major_iter = 0; major_iter < major_dim; major_iter++)
|
|
{
|
|
for (uint32_t minor_iter = 0; minor_iter < minor_dim; minor_iter++)
|
|
{
|
|
const vec4F& p = img(minor_iter, major_iter);
|
|
|
|
uint32_t dst_x = 0, dst_y = 0;
|
|
|
|
// is the minor dim output x?
|
|
if (comp[1] == 0)
|
|
{
|
|
// minor axis is x, major is y
|
|
|
|
// is minor axis (which is output x) flipped?
|
|
if (dir[1] < 0)
|
|
dst_x = minor_dim - 1 - minor_iter;
|
|
else
|
|
dst_x = minor_iter;
|
|
|
|
// is major axis (which is output y) flipped? -1=down in raster order, 1=up
|
|
if (dir[0] < 0)
|
|
dst_y = major_iter;
|
|
else
|
|
dst_y = major_dim - 1 - major_iter;
|
|
}
|
|
else
|
|
{
|
|
// minor axis is output y, major is output x
|
|
|
|
// is minor axis (which is output y) flipped?
|
|
if (dir[1] < 0)
|
|
dst_y = minor_iter;
|
|
else
|
|
dst_y = minor_dim - 1 - minor_iter;
|
|
|
|
// is major axis (which is output x) flipped?
|
|
if (dir[0] < 0)
|
|
dst_x = major_dim - 1 - major_iter;
|
|
else
|
|
dst_x = major_iter;
|
|
}
|
|
|
|
final_img(dst_x, dst_y) = p;
|
|
}
|
|
}
|
|
|
|
final_img.swap(img);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool read_rgbe(const char* pFilename, imagef& img, rgbe_header_info& hdr_info)
|
|
{
|
|
uint8_vec filedata;
|
|
if (!read_file_to_vec(pFilename, filedata))
|
|
return false;
|
|
return read_rgbe(filedata, img, hdr_info);
|
|
}
|
|
|
|
static uint8_vec& append_string(uint8_vec& buf, const char* pStr)
|
|
{
|
|
const size_t str_len = strlen(pStr);
|
|
if (!str_len)
|
|
return buf;
|
|
|
|
const size_t ofs = buf.size();
|
|
buf.resize(ofs + str_len);
|
|
memcpy(&buf[ofs], pStr, str_len);
|
|
|
|
return buf;
|
|
}
|
|
|
|
static uint8_vec& append_string(uint8_vec& buf, const std::string& str)
|
|
{
|
|
if (!str.size())
|
|
return buf;
|
|
return append_string(buf, str.c_str());
|
|
}
|
|
|
|
static inline void float2rgbe(color_rgba &rgbe, const vec4F &c)
|
|
{
|
|
const float red = c[0], green = c[1], blue = c[2];
|
|
assert(red >= 0.0f && green >= 0.0f && blue >= 0.0f);
|
|
|
|
const float max_v = basisu::maximumf(basisu::maximumf(red, green), blue);
|
|
|
|
if (max_v < 1e-32f)
|
|
rgbe.clear();
|
|
else
|
|
{
|
|
int e;
|
|
const float scale = frexp(max_v, &e) * 256.0f / max_v;
|
|
rgbe[0] = (uint8_t)(clamp<int>((int)(red * scale), 0, 255));
|
|
rgbe[1] = (uint8_t)(clamp<int>((int)(green * scale), 0, 255));
|
|
rgbe[2] = (uint8_t)(clamp<int>((int)(blue * scale), 0, 255));
|
|
rgbe[3] = (uint8_t)(e + 128);
|
|
}
|
|
}
|
|
|
|
const bool RGBE_FORCE_RAW = false;
|
|
const bool RGBE_FORCE_OLD_CRUNCH = false; // note must readers (particularly stb_image.h's) don't properly support this, when they should
|
|
|
|
bool write_rgbe(uint8_vec &file_data, imagef& img, rgbe_header_info& hdr_info)
|
|
{
|
|
if (!img.get_width() || !img.get_height())
|
|
return false;
|
|
|
|
const uint32_t width = img.get_width(), height = img.get_height();
|
|
|
|
file_data.resize(0);
|
|
file_data.reserve(1024 + img.get_width() * img.get_height() * 4);
|
|
|
|
append_string(file_data, "#?RADIANCE\n");
|
|
|
|
if (hdr_info.m_has_exposure)
|
|
append_string(file_data, string_format("EXPOSURE=%g\n", hdr_info.m_exposure));
|
|
|
|
if (hdr_info.m_has_gamma)
|
|
append_string(file_data, string_format("GAMMA=%g\n", hdr_info.m_gamma));
|
|
|
|
append_string(file_data, "FORMAT=32-bit_rle_rgbe\n\n");
|
|
append_string(file_data, string_format("-Y %u +X %u\n", height, width));
|
|
|
|
if (((width < 8) || (width > 0x7FFF)) || (RGBE_FORCE_RAW))
|
|
{
|
|
for (uint32_t y = 0; y < height; y++)
|
|
{
|
|
for (uint32_t x = 0; x < width; x++)
|
|
{
|
|
color_rgba rgbe;
|
|
float2rgbe(rgbe, img(x, y));
|
|
append_vector(file_data, (const uint8_t *)&rgbe, sizeof(rgbe));
|
|
}
|
|
}
|
|
}
|
|
else if (RGBE_FORCE_OLD_CRUNCH)
|
|
{
|
|
for (uint32_t y = 0; y < height; y++)
|
|
{
|
|
int prev_r = -1, prev_g = -1, prev_b = -1, prev_e = -1;
|
|
uint32_t cur_run_len = 0;
|
|
|
|
for (uint32_t x = 0; x < width; x++)
|
|
{
|
|
color_rgba rgbe;
|
|
float2rgbe(rgbe, img(x, y));
|
|
|
|
if ((rgbe[0] == prev_r) && (rgbe[1] == prev_g) && (rgbe[2] == prev_b) && (rgbe[3] == prev_e))
|
|
{
|
|
if (++cur_run_len == 255)
|
|
{
|
|
// this ensures rshift stays 0, it's lame but this path is only for testing readers
|
|
color_rgba f(1, 1, 1, cur_run_len - 1);
|
|
append_vector(file_data, (const uint8_t*)&f, sizeof(f));
|
|
append_vector(file_data, (const uint8_t*)&rgbe, sizeof(rgbe));
|
|
cur_run_len = 0;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (cur_run_len > 0)
|
|
{
|
|
color_rgba f(1, 1, 1, cur_run_len);
|
|
append_vector(file_data, (const uint8_t*)&f, sizeof(f));
|
|
|
|
cur_run_len = 0;
|
|
}
|
|
|
|
append_vector(file_data, (const uint8_t*)&rgbe, sizeof(rgbe));
|
|
|
|
prev_r = rgbe[0];
|
|
prev_g = rgbe[1];
|
|
prev_b = rgbe[2];
|
|
prev_e = rgbe[3];
|
|
}
|
|
} // x
|
|
|
|
if (cur_run_len > 0)
|
|
{
|
|
color_rgba f(1, 1, 1, cur_run_len);
|
|
append_vector(file_data, (const uint8_t*)&f, sizeof(f));
|
|
}
|
|
} // y
|
|
}
|
|
else
|
|
{
|
|
uint8_vec temp[4];
|
|
for (uint32_t c = 0; c < 4; c++)
|
|
temp[c].resize(width);
|
|
|
|
for (uint32_t y = 0; y < height; y++)
|
|
{
|
|
color_rgba rgbe(2, 2, width >> 8, width & 0xFF);
|
|
append_vector(file_data, (const uint8_t*)&rgbe, sizeof(rgbe));
|
|
|
|
for (uint32_t x = 0; x < width; x++)
|
|
{
|
|
float2rgbe(rgbe, img(x, y));
|
|
|
|
for (uint32_t c = 0; c < 4; c++)
|
|
temp[c][x] = rgbe[c];
|
|
}
|
|
|
|
for (uint32_t c = 0; c < 4; c++)
|
|
{
|
|
int raw_ofs = -1;
|
|
|
|
uint32_t x = 0;
|
|
while (x < width)
|
|
{
|
|
const uint32_t num_bytes_remaining = width - x;
|
|
const uint32_t max_run_len = basisu::minimum<uint32_t>(num_bytes_remaining, 127);
|
|
const uint8_t cur_byte = temp[c][x];
|
|
|
|
uint32_t run_len = 1;
|
|
while (run_len < max_run_len)
|
|
{
|
|
if (temp[c][x + run_len] != cur_byte)
|
|
break;
|
|
run_len++;
|
|
}
|
|
|
|
const uint32_t cost_to_keep_raw = ((raw_ofs != -1) ? 0 : 1) + run_len; // 0 or 1 bytes to start a raw run, then the repeated bytes issued as raw
|
|
const uint32_t cost_to_take_run = 2 + 1; // 2 bytes to issue the RLE, then 1 bytes to start whatever follows it (raw or RLE)
|
|
|
|
if ((run_len >= 3) && (cost_to_take_run < cost_to_keep_raw))
|
|
{
|
|
file_data.push_back((uint8_t)(128 + run_len));
|
|
file_data.push_back(cur_byte);
|
|
|
|
x += run_len;
|
|
raw_ofs = -1;
|
|
}
|
|
else
|
|
{
|
|
if (raw_ofs < 0)
|
|
{
|
|
raw_ofs = (int)file_data.size();
|
|
file_data.push_back(0);
|
|
}
|
|
|
|
if (++file_data[raw_ofs] == 128)
|
|
raw_ofs = -1;
|
|
|
|
file_data.push_back(cur_byte);
|
|
|
|
x++;
|
|
}
|
|
} // x
|
|
|
|
} // c
|
|
} // y
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool write_rgbe(const char* pFilename, imagef& img, rgbe_header_info& hdr_info)
|
|
{
|
|
uint8_vec file_data;
|
|
if (!write_rgbe(file_data, img, hdr_info))
|
|
return false;
|
|
return write_vec_to_file(pFilename, file_data);
|
|
}
|
|
|
|
bool read_exr(const char* pFilename, imagef& img, int& n_chans)
|
|
{
|
|
n_chans = 0;
|
|
|
|
int width = 0, height = 0;
|
|
float* out_rgba = nullptr;
|
|
const char* err = nullptr;
|
|
|
|
int status = LoadEXRWithLayer(&out_rgba, &width, &height, pFilename, nullptr, &err);
|
|
n_chans = 4;
|
|
if (status != 0)
|
|
{
|
|
error_printf("Failed loading .EXR image \"%s\"! (TinyEXR error: %s)\n", pFilename, err ? err : "?");
|
|
FreeEXRErrorMessage(err);
|
|
free(out_rgba);
|
|
return false;
|
|
}
|
|
|
|
const uint32_t MAX_SUPPORTED_DIM = 65536;
|
|
if ((width < 1) || (height < 1) || (width > (int)MAX_SUPPORTED_DIM) || (height > (int)MAX_SUPPORTED_DIM))
|
|
{
|
|
error_printf("Invalid dimensions of .EXR image \"%s\"!\n", pFilename);
|
|
free(out_rgba);
|
|
return false;
|
|
}
|
|
|
|
img.resize(width, height);
|
|
|
|
if (n_chans == 1)
|
|
{
|
|
const float* pSrc = out_rgba;
|
|
vec4F* pDst = img.get_ptr();
|
|
|
|
for (int y = 0; y < height; y++)
|
|
{
|
|
for (int x = 0; x < width; x++)
|
|
{
|
|
(*pDst)[0] = pSrc[0];
|
|
(*pDst)[1] = pSrc[1];
|
|
(*pDst)[2] = pSrc[2];
|
|
(*pDst)[3] = 1.0f;
|
|
|
|
pSrc += 4;
|
|
++pDst;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
memcpy(img.get_ptr(), out_rgba, sizeof(float) * 4 * img.get_total_pixels());
|
|
}
|
|
|
|
free(out_rgba);
|
|
return true;
|
|
}
|
|
|
|
bool read_exr(const void* pMem, size_t mem_size, imagef& img)
|
|
{
|
|
float* out_rgba = nullptr;
|
|
int width = 0, height = 0;
|
|
const char* pErr = nullptr;
|
|
int res = LoadEXRFromMemory(&out_rgba, &width, &height, (const uint8_t*)pMem, mem_size, &pErr);
|
|
if (res < 0)
|
|
{
|
|
error_printf("Failed loading .EXR image from memory! (TinyEXR error: %s)\n", pErr ? pErr : "?");
|
|
FreeEXRErrorMessage(pErr);
|
|
free(out_rgba);
|
|
return false;
|
|
}
|
|
|
|
img.resize(width, height);
|
|
memcpy(img.get_ptr(), out_rgba, width * height * sizeof(float) * 4);
|
|
free(out_rgba);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool write_exr(const char* pFilename, imagef& img, uint32_t n_chans, uint32_t flags)
|
|
{
|
|
assert((n_chans == 1) || (n_chans == 3) || (n_chans == 4));
|
|
|
|
const bool linear_hint = (flags & WRITE_EXR_LINEAR_HINT) != 0,
|
|
store_float = (flags & WRITE_EXR_STORE_FLOATS) != 0,
|
|
no_compression = (flags & WRITE_EXR_NO_COMPRESSION) != 0;
|
|
|
|
const uint32_t width = img.get_width(), height = img.get_height();
|
|
assert(width && height);
|
|
|
|
if (!width || !height)
|
|
return false;
|
|
|
|
float_vec layers[4];
|
|
float* image_ptrs[4];
|
|
for (uint32_t c = 0; c < n_chans; c++)
|
|
{
|
|
layers[c].resize(width * height);
|
|
image_ptrs[c] = layers[c].get_ptr();
|
|
}
|
|
|
|
// ABGR
|
|
int chan_order[4] = { 3, 2, 1, 0 };
|
|
|
|
if (n_chans == 1)
|
|
{
|
|
// Y
|
|
chan_order[0] = 0;
|
|
}
|
|
else if (n_chans == 3)
|
|
{
|
|
// BGR
|
|
chan_order[0] = 2;
|
|
chan_order[1] = 1;
|
|
chan_order[2] = 0;
|
|
}
|
|
else if (n_chans != 4)
|
|
{
|
|
assert(0);
|
|
return false;
|
|
}
|
|
|
|
for (uint32_t y = 0; y < height; y++)
|
|
{
|
|
for (uint32_t x = 0; x < width; x++)
|
|
{
|
|
const vec4F& p = img(x, y);
|
|
|
|
for (uint32_t c = 0; c < n_chans; c++)
|
|
layers[c][x + y * width] = p[chan_order[c]];
|
|
} // x
|
|
} // y
|
|
|
|
EXRHeader header;
|
|
InitEXRHeader(&header);
|
|
|
|
EXRImage image;
|
|
InitEXRImage(&image);
|
|
|
|
image.num_channels = n_chans;
|
|
image.images = (unsigned char**)image_ptrs;
|
|
image.width = width;
|
|
image.height = height;
|
|
|
|
header.num_channels = n_chans;
|
|
|
|
header.channels = (EXRChannelInfo*)calloc(header.num_channels, sizeof(EXRChannelInfo));
|
|
|
|
// Must be (A)BGR order, since most of EXR viewers expect this channel order.
|
|
for (uint32_t i = 0; i < n_chans; i++)
|
|
{
|
|
char c = 'Y';
|
|
if (n_chans == 3)
|
|
c = "BGR"[i];
|
|
else if (n_chans == 4)
|
|
c = "ABGR"[i];
|
|
|
|
header.channels[i].name[0] = c;
|
|
header.channels[i].name[1] = '\0';
|
|
|
|
header.channels[i].p_linear = linear_hint;
|
|
}
|
|
|
|
header.pixel_types = (int*)calloc(header.num_channels, sizeof(int));
|
|
header.requested_pixel_types = (int*)calloc(header.num_channels, sizeof(int));
|
|
|
|
if (!no_compression)
|
|
header.compression_type = TINYEXR_COMPRESSIONTYPE_ZIP;
|
|
|
|
for (int i = 0; i < header.num_channels; i++)
|
|
{
|
|
// pixel type of input image
|
|
header.pixel_types[i] = TINYEXR_PIXELTYPE_FLOAT;
|
|
|
|
// pixel type of output image to be stored in .EXR
|
|
header.requested_pixel_types[i] = store_float ? TINYEXR_PIXELTYPE_FLOAT : TINYEXR_PIXELTYPE_HALF;
|
|
}
|
|
|
|
const char* pErr_msg = nullptr;
|
|
|
|
int ret = SaveEXRImageToFile(&image, &header, pFilename, &pErr_msg);
|
|
if (ret != TINYEXR_SUCCESS)
|
|
{
|
|
error_printf("Save EXR err: %s\n", pErr_msg);
|
|
FreeEXRErrorMessage(pErr_msg);
|
|
}
|
|
|
|
free(header.channels);
|
|
free(header.pixel_types);
|
|
free(header.requested_pixel_types);
|
|
|
|
return (ret == TINYEXR_SUCCESS);
|
|
}
|
|
|
|
void image::debug_text(uint32_t x_ofs, uint32_t y_ofs, uint32_t scale_x, uint32_t scale_y, const color_rgba& fg, const color_rgba* pBG, bool alpha_only, const char* pFmt, ...)
|
|
{
|
|
char buf[2048];
|
|
|
|
va_list args;
|
|
va_start(args, pFmt);
|
|
#ifdef _WIN32
|
|
vsprintf_s(buf, sizeof(buf), pFmt, args);
|
|
#else
|
|
vsnprintf(buf, sizeof(buf), pFmt, args);
|
|
#endif
|
|
va_end(args);
|
|
|
|
const char* p = buf;
|
|
|
|
const uint32_t orig_x_ofs = x_ofs;
|
|
|
|
while (*p)
|
|
{
|
|
uint8_t c = *p++;
|
|
if ((c < 32) || (c > 127))
|
|
c = '.';
|
|
|
|
const uint8_t* pGlpyh = &g_debug_font8x8_basic[c - 32][0];
|
|
|
|
for (uint32_t y = 0; y < 8; y++)
|
|
{
|
|
uint32_t row_bits = pGlpyh[y];
|
|
for (uint32_t x = 0; x < 8; x++)
|
|
{
|
|
const uint32_t q = row_bits & (1 << x);
|
|
|
|
const color_rgba* pColor = q ? &fg : pBG;
|
|
if (!pColor)
|
|
continue;
|
|
|
|
if (alpha_only)
|
|
fill_box_alpha(x_ofs + x * scale_x, y_ofs + y * scale_y, scale_x, scale_y, *pColor);
|
|
else
|
|
fill_box(x_ofs + x * scale_x, y_ofs + y * scale_y, scale_x, scale_y, *pColor);
|
|
}
|
|
}
|
|
|
|
x_ofs += 8 * scale_x;
|
|
if ((x_ofs + 8 * scale_x) > m_width)
|
|
{
|
|
x_ofs = orig_x_ofs;
|
|
y_ofs += 8 * scale_y;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Very basic global Reinhard tone mapping, output converted to sRGB with no dithering, alpha is carried through unchanged.
|
|
// Only used for debugging/development.
|
|
void tonemap_image_reinhard(image &ldr_img, const imagef &hdr_img, float exposure)
|
|
{
|
|
uint32_t width = hdr_img.get_width(), height = hdr_img.get_height();
|
|
|
|
ldr_img.resize(width, height);
|
|
|
|
for (uint32_t y = 0; y < height; y++)
|
|
{
|
|
for (uint32_t x = 0; x < width; x++)
|
|
{
|
|
vec4F c(hdr_img(x, y));
|
|
|
|
for (uint32_t t = 0; t < 3; t++)
|
|
{
|
|
if (c[t] <= 0.0f)
|
|
{
|
|
c[t] = 0.0f;
|
|
}
|
|
else
|
|
{
|
|
c[t] *= exposure;
|
|
c[t] = c[t] / (1.0f + c[t]);
|
|
}
|
|
}
|
|
|
|
c.clamp(0.0f, 1.0f);
|
|
|
|
c[0] = linear_to_srgb(c[0]) * 255.0f;
|
|
c[1] = linear_to_srgb(c[1]) * 255.0f;
|
|
c[2] = linear_to_srgb(c[2]) * 255.0f;
|
|
c[3] = c[3] * 255.0f;
|
|
|
|
color_rgba& o = ldr_img(x, y);
|
|
|
|
o[0] = (uint8_t)std::round(c[0]);
|
|
o[1] = (uint8_t)std::round(c[1]);
|
|
o[2] = (uint8_t)std::round(c[2]);
|
|
o[3] = (uint8_t)std::round(c[3]);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool tonemap_image_compressive(image& dst_img, const imagef& hdr_test_img)
|
|
{
|
|
const uint32_t width = hdr_test_img.get_width();
|
|
const uint32_t height = hdr_test_img.get_height();
|
|
|
|
uint16_vec orig_half_img(width * 3 * height);
|
|
uint16_vec half_img(width * 3 * height);
|
|
|
|
int max_shift = 32;
|
|
|
|
for (uint32_t y = 0; y < height; y++)
|
|
{
|
|
for (uint32_t x = 0; x < width; x++)
|
|
{
|
|
const vec4F& p = hdr_test_img(x, y);
|
|
|
|
for (uint32_t i = 0; i < 3; i++)
|
|
{
|
|
if (p[i] < 0.0f)
|
|
return false;
|
|
if (p[i] > basist::MAX_HALF_FLOAT)
|
|
return false;
|
|
|
|
uint32_t h = basist::float_to_half(p[i]);
|
|
//uint32_t orig_h = h;
|
|
|
|
orig_half_img[(x + y * width) * 3 + i] = (uint16_t)h;
|
|
|
|
// Rotate sign bit into LSB
|
|
//h = rot_left16((uint16_t)h, 1);
|
|
//assert(rot_right16((uint16_t)h, 1) == orig_h);
|
|
h <<= 1;
|
|
|
|
half_img[(x + y * width) * 3 + i] = (uint16_t)h;
|
|
|
|
// Determine # of leading zero bits, ignoring the sign bit
|
|
if (h)
|
|
{
|
|
int lz = clz(h) - 16;
|
|
assert(lz >= 0 && lz <= 16);
|
|
|
|
assert((h << lz) <= 0xFFFF);
|
|
|
|
max_shift = basisu::minimum<int>(max_shift, lz);
|
|
}
|
|
} // i
|
|
} // x
|
|
} // y
|
|
|
|
//printf("tonemap_image_compressive: Max leading zeros: %i\n", max_shift);
|
|
|
|
uint32_t high_hist[256];
|
|
clear_obj(high_hist);
|
|
|
|
for (uint32_t y = 0; y < height; y++)
|
|
{
|
|
for (uint32_t x = 0; x < width; x++)
|
|
{
|
|
for (uint32_t i = 0; i < 3; i++)
|
|
{
|
|
uint16_t& hf = half_img[(x + y * width) * 3 + i];
|
|
|
|
assert(((uint32_t)hf << max_shift) <= 65535);
|
|
|
|
hf <<= max_shift;
|
|
|
|
uint32_t h = (uint8_t)(hf >> 8);
|
|
high_hist[h]++;
|
|
}
|
|
} // x
|
|
} // y
|
|
|
|
uint32_t total_vals_used = 0;
|
|
int remap_old_to_new[256];
|
|
for (uint32_t i = 0; i < 256; i++)
|
|
remap_old_to_new[i] = -1;
|
|
|
|
for (uint32_t i = 0; i < 256; i++)
|
|
{
|
|
if (high_hist[i] != 0)
|
|
{
|
|
remap_old_to_new[i] = total_vals_used;
|
|
total_vals_used++;
|
|
}
|
|
}
|
|
|
|
assert(total_vals_used >= 1);
|
|
|
|
//printf("tonemap_image_compressive: Total used high byte values: %u, unused: %u\n", total_vals_used, 256 - total_vals_used);
|
|
|
|
bool val_used[256];
|
|
clear_obj(val_used);
|
|
|
|
int remap_new_to_old[256];
|
|
for (uint32_t i = 0; i < 256; i++)
|
|
remap_new_to_old[i] = -1;
|
|
BASISU_NOTE_UNUSED(remap_new_to_old);
|
|
|
|
int prev_c = -1;
|
|
BASISU_NOTE_UNUSED(prev_c);
|
|
for (uint32_t i = 0; i < 256; i++)
|
|
{
|
|
if (remap_old_to_new[i] >= 0)
|
|
{
|
|
int c;
|
|
if (total_vals_used <= 1)
|
|
c = remap_old_to_new[i];
|
|
else
|
|
{
|
|
c = (remap_old_to_new[i] * 255 + ((total_vals_used - 1) / 2)) / (total_vals_used - 1);
|
|
|
|
assert(c > prev_c);
|
|
}
|
|
|
|
assert(!val_used[c]);
|
|
|
|
remap_new_to_old[c] = i;
|
|
|
|
remap_old_to_new[i] = c;
|
|
prev_c = c;
|
|
|
|
//printf("%u ", c);
|
|
|
|
val_used[c] = true;
|
|
}
|
|
} // i
|
|
//printf("\n");
|
|
|
|
dst_img.resize(width, height);
|
|
|
|
for (uint32_t y = 0; y < height; y++)
|
|
{
|
|
for (uint32_t x = 0; x < width; x++)
|
|
{
|
|
for (uint32_t c = 0; c < 3; c++)
|
|
{
|
|
uint16_t& v16 = half_img[(x + y * width) * 3 + c];
|
|
|
|
uint32_t hb = v16 >> 8;
|
|
//uint32_t lb = v16 & 0xFF;
|
|
|
|
assert(remap_old_to_new[hb] != -1);
|
|
assert(remap_old_to_new[hb] <= 255);
|
|
assert(remap_new_to_old[remap_old_to_new[hb]] == (int)hb);
|
|
|
|
hb = remap_old_to_new[hb];
|
|
|
|
//v16 = (uint16_t)((hb << 8) | lb);
|
|
|
|
dst_img(x, y)[c] = (uint8_t)hb;
|
|
}
|
|
} // x
|
|
} // y
|
|
|
|
return true;
|
|
}
|
|
|
|
} // namespace basisu
|