godot/core/array.cpp
2020-04-21 12:16:45 -03:00

568 lines
15 KiB
C++

/*************************************************************************/
/* array.cpp */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2020 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2020 Godot Engine contributors (cf. AUTHORS.md). */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "array.h"
#include "container_type_validate.h"
#include "core/hashfuncs.h"
#include "core/object.h"
#include "core/script_language.h"
#include "core/variant.h"
#include "core/vector.h"
class ArrayPrivate {
public:
SafeRefCount refcount;
Vector<Variant> array;
ContainerTypeValidate typed;
};
void Array::_ref(const Array &p_from) const {
ArrayPrivate *_fp = p_from._p;
ERR_FAIL_COND(!_fp); // should NOT happen.
if (_fp == _p)
return; // whatever it is, nothing to do here move along
bool success = _fp->refcount.ref();
ERR_FAIL_COND(!success); // should really not happen either
_unref();
_p = p_from._p;
}
void Array::_unref() const {
if (!_p)
return;
if (_p->refcount.unref()) {
memdelete(_p);
}
_p = nullptr;
}
Variant &Array::operator[](int p_idx) {
return _p->array.write[p_idx];
}
const Variant &Array::operator[](int p_idx) const {
return _p->array[p_idx];
}
int Array::size() const {
return _p->array.size();
}
bool Array::empty() const {
return _p->array.empty();
}
void Array::clear() {
_p->array.clear();
}
bool Array::operator==(const Array &p_array) const {
return _p == p_array._p;
}
uint32_t Array::hash() const {
uint32_t h = hash_djb2_one_32(0);
for (int i = 0; i < _p->array.size(); i++) {
h = hash_djb2_one_32(_p->array[i].hash(), h);
}
return h;
}
void Array::_assign(const Array &p_array) {
if (_p->typed.type != Variant::OBJECT && _p->typed.type == p_array._p->typed.type) {
//same type or untyped, just reference, shuold be fine
_ref(p_array);
} else if (_p->typed.type == Variant::NIL) { //from typed to untyped, must copy, but this is cheap anyway
_p->array = p_array._p->array;
} else if (p_array._p->typed.type == Variant::NIL) { //from untyped to typed, must try to check if they are all valid
if (_p->typed.type == Variant::OBJECT) {
//for objects, it needs full validation, either can be converted or fail
for (int i = 0; i < p_array._p->array.size(); i++) {
if (!_p->typed.validate(p_array._p->array[i], "assign")) {
return;
}
}
_p->array = p_array._p->array; //then just copy, which is cheap anyway
} else {
//for non objects, we need to check if there is a valid conversion, which needs to happen one by one, so this is the worst case.
Vector<Variant> new_array;
new_array.resize(p_array._p->array.size());
for (int i = 0; i < p_array._p->array.size(); i++) {
Variant src_val = p_array._p->array[i];
if (src_val.get_type() == _p->typed.type) {
new_array.write[i] = src_val;
} else if (Variant::can_convert_strict(src_val.get_type(), _p->typed.type)) {
Variant *ptr = &src_val;
Callable::CallError ce;
new_array.write[i] = Variant::construct(_p->typed.type, (const Variant **)&ptr, 1, ce, true);
if (ce.error != Callable::CallError::CALL_OK) {
ERR_FAIL_MSG("Unable to convert array index " + itos(i) + " from '" + Variant::get_type_name(src_val.get_type()) + "' to '" + Variant::get_type_name(_p->typed.type) + "'.");
}
} else {
ERR_FAIL_MSG("Unable to convert array index " + itos(i) + " from '" + Variant::get_type_name(src_val.get_type()) + "' to '" + Variant::get_type_name(_p->typed.type) + "'.");
}
}
_p->array = new_array;
}
} else if (_p->typed.can_reference(p_array._p->typed)) { //same type or compatible
_ref(p_array);
} else {
ERR_FAIL_MSG("Assignment of arrays of incompatible types.");
}
}
void Array::operator=(const Array &p_array) {
_assign(p_array);
}
void Array::push_back(const Variant &p_value) {
ERR_FAIL_COND(!_p->typed.validate(p_value, "push_back"));
_p->array.push_back(p_value);
}
Error Array::resize(int p_new_size) {
return _p->array.resize(p_new_size);
}
void Array::insert(int p_pos, const Variant &p_value) {
ERR_FAIL_COND(!_p->typed.validate(p_value, "insert"));
_p->array.insert(p_pos, p_value);
}
void Array::erase(const Variant &p_value) {
ERR_FAIL_COND(!_p->typed.validate(p_value, "erase"));
_p->array.erase(p_value);
}
Variant Array::front() const {
ERR_FAIL_COND_V_MSG(_p->array.size() == 0, Variant(), "Can't take value from empty array.");
return operator[](0);
}
Variant Array::back() const {
ERR_FAIL_COND_V_MSG(_p->array.size() == 0, Variant(), "Can't take value from empty array.");
return operator[](_p->array.size() - 1);
}
int Array::find(const Variant &p_value, int p_from) const {
ERR_FAIL_COND_V(!_p->typed.validate(p_value, "find"), -1);
return _p->array.find(p_value, p_from);
}
int Array::rfind(const Variant &p_value, int p_from) const {
if (_p->array.size() == 0)
return -1;
ERR_FAIL_COND_V(!_p->typed.validate(p_value, "rfind"), -1);
if (p_from < 0) {
// Relative offset from the end
p_from = _p->array.size() + p_from;
}
if (p_from < 0 || p_from >= _p->array.size()) {
// Limit to array boundaries
p_from = _p->array.size() - 1;
}
for (int i = p_from; i >= 0; i--) {
if (_p->array[i] == p_value) {
return i;
}
}
return -1;
}
int Array::find_last(const Variant &p_value) const {
ERR_FAIL_COND_V(!_p->typed.validate(p_value, "find_last"), -1);
return rfind(p_value);
}
int Array::count(const Variant &p_value) const {
ERR_FAIL_COND_V(!_p->typed.validate(p_value, "count"), 0);
if (_p->array.size() == 0)
return 0;
int amount = 0;
for (int i = 0; i < _p->array.size(); i++) {
if (_p->array[i] == p_value) {
amount++;
}
}
return amount;
}
bool Array::has(const Variant &p_value) const {
ERR_FAIL_COND_V(!_p->typed.validate(p_value, "use 'has'"), false);
return _p->array.find(p_value, 0) != -1;
}
void Array::remove(int p_pos) {
_p->array.remove(p_pos);
}
void Array::set(int p_idx, const Variant &p_value) {
ERR_FAIL_COND(!_p->typed.validate(p_value, "set"));
operator[](p_idx) = p_value;
}
const Variant &Array::get(int p_idx) const {
return operator[](p_idx);
}
Array Array::duplicate(bool p_deep) const {
Array new_arr;
int element_count = size();
new_arr.resize(element_count);
new_arr._p->typed = _p->typed;
for (int i = 0; i < element_count; i++) {
new_arr[i] = p_deep ? get(i).duplicate(p_deep) : get(i);
}
return new_arr;
}
int Array::_fix_slice_index(int p_index, int p_arr_len, int p_top_mod) {
p_index = CLAMP(p_index, -p_arr_len, p_arr_len + p_top_mod);
if (p_index < 0) {
p_index = (p_index % p_arr_len + p_arr_len) % p_arr_len; // positive modulo
}
return p_index;
}
int Array::_clamp_index(int p_index) const {
return CLAMP(p_index, -size() + 1, size() - 1);
}
#define ARRAY_GET_DEEP(idx, is_deep) is_deep ? get(idx).duplicate(is_deep) : get(idx)
Array Array::slice(int p_begin, int p_end, int p_step, bool p_deep) const { // like python, but inclusive on upper bound
Array new_arr;
if (empty()) // Don't try to slice empty arrays.
return new_arr;
p_begin = Array::_fix_slice_index(p_begin, size(), -1); // can't start out of range
p_end = Array::_fix_slice_index(p_end, size(), 0);
int x = p_begin;
int new_arr_i = 0;
ERR_FAIL_COND_V(p_step == 0, new_arr);
if (Array::_clamp_index(p_begin) == Array::_clamp_index(p_end)) { // don't include element twice
new_arr.resize(1);
// new_arr[0] = 1;
new_arr[0] = ARRAY_GET_DEEP(Array::_clamp_index(p_begin), p_deep);
return new_arr;
} else {
int element_count = ceil((int)MAX(0, (p_end - p_begin) / p_step)) + 1;
if (element_count == 1) { // delta going in wrong direction to reach end
new_arr.resize(0);
return new_arr;
}
new_arr.resize(element_count);
}
// if going backwards, have to have a different terminating condition
if (p_step < 0) {
while (x >= p_end) {
new_arr[new_arr_i] = ARRAY_GET_DEEP(Array::_clamp_index(x), p_deep);
x += p_step;
new_arr_i += 1;
}
} else if (p_step > 0) {
while (x <= p_end) {
new_arr[new_arr_i] = ARRAY_GET_DEEP(Array::_clamp_index(x), p_deep);
x += p_step;
new_arr_i += 1;
}
}
return new_arr;
}
struct _ArrayVariantSort {
_FORCE_INLINE_ bool operator()(const Variant &p_l, const Variant &p_r) const {
bool valid = false;
Variant res;
Variant::evaluate(Variant::OP_LESS, p_l, p_r, res, valid);
if (!valid)
res = false;
return res;
}
};
Array &Array::sort() {
_p->array.sort_custom<_ArrayVariantSort>();
return *this;
}
struct _ArrayVariantSortCustom {
Object *obj;
StringName func;
_FORCE_INLINE_ bool operator()(const Variant &p_l, const Variant &p_r) const {
const Variant *args[2] = { &p_l, &p_r };
Callable::CallError err;
bool res = obj->call(func, args, 2, err);
if (err.error != Callable::CallError::CALL_OK)
res = false;
return res;
}
};
Array &Array::sort_custom(Object *p_obj, const StringName &p_function) {
ERR_FAIL_NULL_V(p_obj, *this);
SortArray<Variant, _ArrayVariantSortCustom, true> avs;
avs.compare.obj = p_obj;
avs.compare.func = p_function;
avs.sort(_p->array.ptrw(), _p->array.size());
return *this;
}
void Array::shuffle() {
const int n = _p->array.size();
if (n < 2)
return;
Variant *data = _p->array.ptrw();
for (int i = n - 1; i >= 1; i--) {
const int j = Math::rand() % (i + 1);
const Variant tmp = data[j];
data[j] = data[i];
data[i] = tmp;
}
}
template <typename Less>
_FORCE_INLINE_ int bisect(const Vector<Variant> &p_array, const Variant &p_value, bool p_before, const Less &p_less) {
int lo = 0;
int hi = p_array.size();
if (p_before) {
while (lo < hi) {
const int mid = (lo + hi) / 2;
if (p_less(p_array.get(mid), p_value)) {
lo = mid + 1;
} else {
hi = mid;
}
}
} else {
while (lo < hi) {
const int mid = (lo + hi) / 2;
if (p_less(p_value, p_array.get(mid))) {
hi = mid;
} else {
lo = mid + 1;
}
}
}
return lo;
}
int Array::bsearch(const Variant &p_value, bool p_before) {
ERR_FAIL_COND_V(!_p->typed.validate(p_value, "binary search"), -1);
return bisect(_p->array, p_value, p_before, _ArrayVariantSort());
}
int Array::bsearch_custom(const Variant &p_value, Object *p_obj, const StringName &p_function, bool p_before) {
ERR_FAIL_COND_V(!_p->typed.validate(p_value, "custom binary search"), -1);
ERR_FAIL_NULL_V(p_obj, 0);
_ArrayVariantSortCustom less;
less.obj = p_obj;
less.func = p_function;
return bisect(_p->array, p_value, p_before, less);
}
Array &Array::invert() {
_p->array.invert();
return *this;
}
void Array::push_front(const Variant &p_value) {
ERR_FAIL_COND(!_p->typed.validate(p_value, "push_front"));
_p->array.insert(0, p_value);
}
Variant Array::pop_back() {
if (!_p->array.empty()) {
int n = _p->array.size() - 1;
Variant ret = _p->array.get(n);
_p->array.resize(n);
return ret;
}
return Variant();
}
Variant Array::pop_front() {
if (!_p->array.empty()) {
Variant ret = _p->array.get(0);
_p->array.remove(0);
return ret;
}
return Variant();
}
Variant Array::min() const {
Variant minval;
for (int i = 0; i < size(); i++) {
if (i == 0) {
minval = get(i);
} else {
bool valid;
Variant ret;
Variant test = get(i);
Variant::evaluate(Variant::OP_LESS, test, minval, ret, valid);
if (!valid) {
return Variant(); //not a valid comparison
}
if (bool(ret)) {
//is less
minval = test;
}
}
}
return minval;
}
Variant Array::max() const {
Variant maxval;
for (int i = 0; i < size(); i++) {
if (i == 0) {
maxval = get(i);
} else {
bool valid;
Variant ret;
Variant test = get(i);
Variant::evaluate(Variant::OP_GREATER, test, maxval, ret, valid);
if (!valid) {
return Variant(); //not a valid comparison
}
if (bool(ret)) {
//is less
maxval = test;
}
}
}
return maxval;
}
const void *Array::id() const {
return _p->array.ptr();
}
Array::Array(const Array &p_from, uint32_t p_type, const StringName &p_class_name, const Variant &p_script) {
_p = memnew(ArrayPrivate);
_p->refcount.init();
set_typed(p_type, p_class_name, p_script);
_assign(p_from);
}
void Array::set_typed(uint32_t p_type, const StringName &p_class_name, const Variant &p_script) {
ERR_FAIL_COND_MSG(_p->array.size() > 0, "Type can only be set when array is empty.");
ERR_FAIL_COND_MSG(_p->refcount.get() > 1, "Type can only be set when array has no more than one user.");
ERR_FAIL_COND_MSG(_p->typed.type != Variant::NIL, "Type can only be set once.");
ERR_FAIL_COND_MSG(p_class_name != StringName() && p_type != Variant::OBJECT, "Class names can only be set for type OBJECT");
Ref<Script> script = p_script;
ERR_FAIL_COND_MSG(script.is_valid() && p_class_name == StringName(), "Script class can only be set together with base class name");
_p->typed.type = Variant::Type(p_type);
_p->typed.class_name = p_class_name;
_p->typed.script = script;
_p->typed.where = "TypedArray";
}
Array::Array(const Array &p_from) {
_p = nullptr;
_ref(p_from);
}
Array::Array() {
_p = memnew(ArrayPrivate);
_p->refcount.init();
}
Array::~Array() {
_unref();
}