godot/core/math/aabb.h
2024-08-19 23:55:31 -07:00

499 lines
15 KiB
C++

/**************************************************************************/
/* aabb.h */
/**************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* https://godotengine.org */
/**************************************************************************/
/* Copyright (c) 2014-present Godot Engine contributors (see AUTHORS.md). */
/* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. */
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/**************************************************************************/
#ifndef AABB_H
#define AABB_H
#include "core/math/plane.h"
#include "core/math/vector3.h"
/**
* AABB (Axis Aligned Bounding Box)
* This is implemented by a point (position) and the box size.
*/
class Variant;
struct [[nodiscard]] AABB {
Vector3 position;
Vector3 size;
real_t get_volume() const;
_FORCE_INLINE_ bool has_volume() const {
return size.x > 0.0f && size.y > 0.0f && size.z > 0.0f;
}
_FORCE_INLINE_ bool has_surface() const {
return size.x > 0.0f || size.y > 0.0f || size.z > 0.0f;
}
const Vector3 &get_position() const { return position; }
void set_position(const Vector3 &p_pos) { position = p_pos; }
const Vector3 &get_size() const { return size; }
void set_size(const Vector3 &p_size) { size = p_size; }
bool operator==(const AABB &p_rval) const;
bool operator!=(const AABB &p_rval) const;
bool is_equal_approx(const AABB &p_aabb) const;
bool is_finite() const;
_FORCE_INLINE_ bool intersects(const AABB &p_aabb) const; /// Both AABBs overlap
_FORCE_INLINE_ bool intersects_inclusive(const AABB &p_aabb) const; /// Both AABBs (or their faces) overlap
_FORCE_INLINE_ bool encloses(const AABB &p_aabb) const; /// p_aabb is completely inside this
AABB merge(const AABB &p_with) const;
void merge_with(const AABB &p_aabb); ///merge with another AABB
AABB intersection(const AABB &p_aabb) const; ///get box where two intersect, empty if no intersection occurs
_FORCE_INLINE_ bool smits_intersect_ray(const Vector3 &p_from, const Vector3 &p_dir, real_t p_t0, real_t p_t1) const;
bool intersects_segment(const Vector3 &p_from, const Vector3 &p_to, Vector3 *r_intersection_point = nullptr, Vector3 *r_normal = nullptr) const;
bool intersects_ray(const Vector3 &p_from, const Vector3 &p_dir) const {
bool inside;
return find_intersects_ray(p_from, p_dir, inside);
}
bool find_intersects_ray(const Vector3 &p_from, const Vector3 &p_dir, bool &r_inside, Vector3 *r_intersection_point = nullptr, Vector3 *r_normal = nullptr) const;
_FORCE_INLINE_ bool intersects_convex_shape(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count) const;
_FORCE_INLINE_ bool inside_convex_shape(const Plane *p_planes, int p_plane_count) const;
bool intersects_plane(const Plane &p_plane) const;
_FORCE_INLINE_ bool has_point(const Vector3 &p_point) const;
_FORCE_INLINE_ Vector3 get_support(const Vector3 &p_direction) const;
Vector3 get_longest_axis() const;
int get_longest_axis_index() const;
_FORCE_INLINE_ real_t get_longest_axis_size() const;
Vector3 get_shortest_axis() const;
int get_shortest_axis_index() const;
_FORCE_INLINE_ real_t get_shortest_axis_size() const;
AABB grow(real_t p_by) const;
_FORCE_INLINE_ void grow_by(real_t p_amount);
void get_edge(int p_edge, Vector3 &r_from, Vector3 &r_to) const;
_FORCE_INLINE_ Vector3 get_endpoint(int p_point) const;
AABB expand(const Vector3 &p_vector) const;
_FORCE_INLINE_ void project_range_in_plane(const Plane &p_plane, real_t &r_min, real_t &r_max) const;
_FORCE_INLINE_ void expand_to(const Vector3 &p_vector); /** expand to contain a point if necessary */
_FORCE_INLINE_ AABB abs() const {
return AABB(position + size.minf(0), size.abs());
}
Variant intersects_segment_bind(const Vector3 &p_from, const Vector3 &p_to) const;
Variant intersects_ray_bind(const Vector3 &p_from, const Vector3 &p_dir) const;
_FORCE_INLINE_ void quantize(real_t p_unit);
_FORCE_INLINE_ AABB quantized(real_t p_unit) const;
_FORCE_INLINE_ void set_end(const Vector3 &p_end) {
size = p_end - position;
}
_FORCE_INLINE_ Vector3 get_end() const {
return position + size;
}
_FORCE_INLINE_ Vector3 get_center() const {
return position + (size * 0.5f);
}
operator String() const;
_FORCE_INLINE_ AABB() {}
inline AABB(const Vector3 &p_pos, const Vector3 &p_size) :
position(p_pos),
size(p_size) {
}
};
inline bool AABB::intersects(const AABB &p_aabb) const {
#ifdef MATH_CHECKS
if (unlikely(size.x < 0 || size.y < 0 || size.z < 0 || p_aabb.size.x < 0 || p_aabb.size.y < 0 || p_aabb.size.z < 0)) {
ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size.");
}
#endif
if (position.x >= (p_aabb.position.x + p_aabb.size.x)) {
return false;
}
if ((position.x + size.x) <= p_aabb.position.x) {
return false;
}
if (position.y >= (p_aabb.position.y + p_aabb.size.y)) {
return false;
}
if ((position.y + size.y) <= p_aabb.position.y) {
return false;
}
if (position.z >= (p_aabb.position.z + p_aabb.size.z)) {
return false;
}
if ((position.z + size.z) <= p_aabb.position.z) {
return false;
}
return true;
}
inline bool AABB::intersects_inclusive(const AABB &p_aabb) const {
#ifdef MATH_CHECKS
if (unlikely(size.x < 0 || size.y < 0 || size.z < 0 || p_aabb.size.x < 0 || p_aabb.size.y < 0 || p_aabb.size.z < 0)) {
ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size.");
}
#endif
if (position.x > (p_aabb.position.x + p_aabb.size.x)) {
return false;
}
if ((position.x + size.x) < p_aabb.position.x) {
return false;
}
if (position.y > (p_aabb.position.y + p_aabb.size.y)) {
return false;
}
if ((position.y + size.y) < p_aabb.position.y) {
return false;
}
if (position.z > (p_aabb.position.z + p_aabb.size.z)) {
return false;
}
if ((position.z + size.z) < p_aabb.position.z) {
return false;
}
return true;
}
inline bool AABB::encloses(const AABB &p_aabb) const {
#ifdef MATH_CHECKS
if (unlikely(size.x < 0 || size.y < 0 || size.z < 0 || p_aabb.size.x < 0 || p_aabb.size.y < 0 || p_aabb.size.z < 0)) {
ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size.");
}
#endif
Vector3 src_min = position;
Vector3 src_max = position + size;
Vector3 dst_min = p_aabb.position;
Vector3 dst_max = p_aabb.position + p_aabb.size;
return (
(src_min.x <= dst_min.x) &&
(src_max.x >= dst_max.x) &&
(src_min.y <= dst_min.y) &&
(src_max.y >= dst_max.y) &&
(src_min.z <= dst_min.z) &&
(src_max.z >= dst_max.z));
}
Vector3 AABB::get_support(const Vector3 &p_direction) const {
Vector3 support = position;
if (p_direction.x > 0.0f) {
support.x += size.x;
}
if (p_direction.y > 0.0f) {
support.y += size.y;
}
if (p_direction.z > 0.0f) {
support.z += size.z;
}
return support;
}
Vector3 AABB::get_endpoint(int p_point) const {
switch (p_point) {
case 0:
return Vector3(position.x, position.y, position.z);
case 1:
return Vector3(position.x, position.y, position.z + size.z);
case 2:
return Vector3(position.x, position.y + size.y, position.z);
case 3:
return Vector3(position.x, position.y + size.y, position.z + size.z);
case 4:
return Vector3(position.x + size.x, position.y, position.z);
case 5:
return Vector3(position.x + size.x, position.y, position.z + size.z);
case 6:
return Vector3(position.x + size.x, position.y + size.y, position.z);
case 7:
return Vector3(position.x + size.x, position.y + size.y, position.z + size.z);
}
ERR_FAIL_V(Vector3());
}
bool AABB::intersects_convex_shape(const Plane *p_planes, int p_plane_count, const Vector3 *p_points, int p_point_count) const {
Vector3 half_extents = size * 0.5f;
Vector3 ofs = position + half_extents;
for (int i = 0; i < p_plane_count; i++) {
const Plane &p = p_planes[i];
Vector3 point(
(p.normal.x > 0) ? -half_extents.x : half_extents.x,
(p.normal.y > 0) ? -half_extents.y : half_extents.y,
(p.normal.z > 0) ? -half_extents.z : half_extents.z);
point += ofs;
if (p.is_point_over(point)) {
return false;
}
}
// Make sure all points in the shape aren't fully separated from the AABB on
// each axis.
int bad_point_counts_positive[3] = { 0 };
int bad_point_counts_negative[3] = { 0 };
for (int k = 0; k < 3; k++) {
for (int i = 0; i < p_point_count; i++) {
if (p_points[i].coord[k] > ofs.coord[k] + half_extents.coord[k]) {
bad_point_counts_positive[k]++;
}
if (p_points[i].coord[k] < ofs.coord[k] - half_extents.coord[k]) {
bad_point_counts_negative[k]++;
}
}
if (bad_point_counts_negative[k] == p_point_count) {
return false;
}
if (bad_point_counts_positive[k] == p_point_count) {
return false;
}
}
return true;
}
bool AABB::inside_convex_shape(const Plane *p_planes, int p_plane_count) const {
Vector3 half_extents = size * 0.5f;
Vector3 ofs = position + half_extents;
for (int i = 0; i < p_plane_count; i++) {
const Plane &p = p_planes[i];
Vector3 point(
(p.normal.x < 0) ? -half_extents.x : half_extents.x,
(p.normal.y < 0) ? -half_extents.y : half_extents.y,
(p.normal.z < 0) ? -half_extents.z : half_extents.z);
point += ofs;
if (p.is_point_over(point)) {
return false;
}
}
return true;
}
bool AABB::has_point(const Vector3 &p_point) const {
#ifdef MATH_CHECKS
if (unlikely(size.x < 0 || size.y < 0 || size.z < 0)) {
ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size.");
}
#endif
if (p_point.x < position.x) {
return false;
}
if (p_point.y < position.y) {
return false;
}
if (p_point.z < position.z) {
return false;
}
if (p_point.x > position.x + size.x) {
return false;
}
if (p_point.y > position.y + size.y) {
return false;
}
if (p_point.z > position.z + size.z) {
return false;
}
return true;
}
inline void AABB::expand_to(const Vector3 &p_vector) {
#ifdef MATH_CHECKS
if (unlikely(size.x < 0 || size.y < 0 || size.z < 0)) {
ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size.");
}
#endif
Vector3 begin = position;
Vector3 end = position + size;
if (p_vector.x < begin.x) {
begin.x = p_vector.x;
}
if (p_vector.y < begin.y) {
begin.y = p_vector.y;
}
if (p_vector.z < begin.z) {
begin.z = p_vector.z;
}
if (p_vector.x > end.x) {
end.x = p_vector.x;
}
if (p_vector.y > end.y) {
end.y = p_vector.y;
}
if (p_vector.z > end.z) {
end.z = p_vector.z;
}
position = begin;
size = end - begin;
}
void AABB::project_range_in_plane(const Plane &p_plane, real_t &r_min, real_t &r_max) const {
Vector3 half_extents(size.x * 0.5f, size.y * 0.5f, size.z * 0.5f);
Vector3 center(position.x + half_extents.x, position.y + half_extents.y, position.z + half_extents.z);
real_t length = p_plane.normal.abs().dot(half_extents);
real_t distance = p_plane.distance_to(center);
r_min = distance - length;
r_max = distance + length;
}
inline real_t AABB::get_longest_axis_size() const {
real_t max_size = size.x;
if (size.y > max_size) {
max_size = size.y;
}
if (size.z > max_size) {
max_size = size.z;
}
return max_size;
}
inline real_t AABB::get_shortest_axis_size() const {
real_t max_size = size.x;
if (size.y < max_size) {
max_size = size.y;
}
if (size.z < max_size) {
max_size = size.z;
}
return max_size;
}
bool AABB::smits_intersect_ray(const Vector3 &p_from, const Vector3 &p_dir, real_t p_t0, real_t p_t1) const {
#ifdef MATH_CHECKS
if (unlikely(size.x < 0 || size.y < 0 || size.z < 0)) {
ERR_PRINT("AABB size is negative, this is not supported. Use AABB.abs() to get an AABB with a positive size.");
}
#endif
real_t divx = 1.0f / p_dir.x;
real_t divy = 1.0f / p_dir.y;
real_t divz = 1.0f / p_dir.z;
Vector3 upbound = position + size;
real_t tmin, tmax, tymin, tymax, tzmin, tzmax;
if (p_dir.x >= 0) {
tmin = (position.x - p_from.x) * divx;
tmax = (upbound.x - p_from.x) * divx;
} else {
tmin = (upbound.x - p_from.x) * divx;
tmax = (position.x - p_from.x) * divx;
}
if (p_dir.y >= 0) {
tymin = (position.y - p_from.y) * divy;
tymax = (upbound.y - p_from.y) * divy;
} else {
tymin = (upbound.y - p_from.y) * divy;
tymax = (position.y - p_from.y) * divy;
}
if ((tmin > tymax) || (tymin > tmax)) {
return false;
}
if (tymin > tmin) {
tmin = tymin;
}
if (tymax < tmax) {
tmax = tymax;
}
if (p_dir.z >= 0) {
tzmin = (position.z - p_from.z) * divz;
tzmax = (upbound.z - p_from.z) * divz;
} else {
tzmin = (upbound.z - p_from.z) * divz;
tzmax = (position.z - p_from.z) * divz;
}
if ((tmin > tzmax) || (tzmin > tmax)) {
return false;
}
if (tzmin > tmin) {
tmin = tzmin;
}
if (tzmax < tmax) {
tmax = tzmax;
}
return ((tmin < p_t1) && (tmax > p_t0));
}
void AABB::grow_by(real_t p_amount) {
position.x -= p_amount;
position.y -= p_amount;
position.z -= p_amount;
size.x += 2.0f * p_amount;
size.y += 2.0f * p_amount;
size.z += 2.0f * p_amount;
}
void AABB::quantize(real_t p_unit) {
size += position;
position.x -= Math::fposmodp(position.x, p_unit);
position.y -= Math::fposmodp(position.y, p_unit);
position.z -= Math::fposmodp(position.z, p_unit);
size.x -= Math::fposmodp(size.x, p_unit);
size.y -= Math::fposmodp(size.y, p_unit);
size.z -= Math::fposmodp(size.z, p_unit);
size.x += p_unit;
size.y += p_unit;
size.z += p_unit;
size -= position;
}
AABB AABB::quantized(real_t p_unit) const {
AABB ret = *this;
ret.quantize(p_unit);
return ret;
}
#endif // AABB_H