godot/thirdparty/icu4c/common/ucnv_u8.cpp
2024-10-24 22:47:59 +03:00

944 lines
30 KiB
C++

// © 2016 and later: Unicode, Inc. and others.
// License & terms of use: http://www.unicode.org/copyright.html
/*
**********************************************************************
* Copyright (C) 2002-2016, International Business Machines
* Corporation and others. All Rights Reserved.
**********************************************************************
* file name: ucnv_u8.c
* encoding: UTF-8
* tab size: 8 (not used)
* indentation:4
*
* created on: 2002jul01
* created by: Markus W. Scherer
*
* UTF-8 converter implementation. Used to be in ucnv_utf.c.
*
* Also, CESU-8 implementation, see UTR 26.
* The CESU-8 converter uses all the same functions as the
* UTF-8 converter, with a branch for converting supplementary code points.
*/
#include "unicode/utypes.h"
#if !UCONFIG_NO_CONVERSION
#include "unicode/ucnv.h"
#include "unicode/utf.h"
#include "unicode/utf8.h"
#include "unicode/utf16.h"
#include "uassert.h"
#include "ucnv_bld.h"
#include "ucnv_cnv.h"
#include "cmemory.h"
#include "ustr_imp.h"
/* Prototypes --------------------------------------------------------------- */
/* Keep these here to make finicky compilers happy */
U_CFUNC void ucnv_fromUnicode_UTF8(UConverterFromUnicodeArgs *args,
UErrorCode *err);
U_CFUNC void ucnv_fromUnicode_UTF8_OFFSETS_LOGIC(UConverterFromUnicodeArgs *args,
UErrorCode *err);
/* UTF-8 -------------------------------------------------------------------- */
#define MAXIMUM_UCS2 0x0000FFFF
static const uint32_t offsetsFromUTF8[5] = {0,
static_cast<uint32_t>(0x00000000), static_cast<uint32_t>(0x00003080),
static_cast<uint32_t>(0x000E2080), static_cast<uint32_t>(0x03C82080)
};
static UBool hasCESU8Data(const UConverter *cnv)
{
#if UCONFIG_ONLY_HTML_CONVERSION
return false;
#else
return cnv->sharedData == &_CESU8Data;
#endif
}
U_CDECL_BEGIN
static void U_CALLCONV ucnv_toUnicode_UTF8 (UConverterToUnicodeArgs * args,
UErrorCode * err)
{
UConverter *cnv = args->converter;
const unsigned char *mySource = (unsigned char *) args->source;
char16_t *myTarget = args->target;
const unsigned char *sourceLimit = (unsigned char *) args->sourceLimit;
const char16_t *targetLimit = args->targetLimit;
unsigned char *toUBytes = cnv->toUBytes;
UBool isCESU8 = hasCESU8Data(cnv);
uint32_t ch, ch2 = 0;
int32_t i, inBytes;
/* Restore size of current sequence */
if (cnv->toULength > 0 && myTarget < targetLimit)
{
inBytes = cnv->mode; /* restore # of bytes to consume */
i = cnv->toULength; /* restore # of bytes consumed */
cnv->toULength = 0;
ch = cnv->toUnicodeStatus;/*Stores the previously calculated ch from a previous call*/
cnv->toUnicodeStatus = 0;
goto morebytes;
}
while (mySource < sourceLimit && myTarget < targetLimit)
{
ch = *(mySource++);
if (U8_IS_SINGLE(ch)) /* Simple case */
{
*(myTarget++) = (char16_t) ch;
}
else
{
/* store the first char */
toUBytes[0] = (char)ch;
inBytes = U8_COUNT_BYTES_NON_ASCII(ch); /* lookup current sequence length */
i = 1;
morebytes:
while (i < inBytes)
{
if (mySource < sourceLimit)
{
toUBytes[i] = (char) (ch2 = *mySource);
if (!icu::UTF8::isValidTrail(ch, static_cast<uint8_t>(ch2), i, inBytes) &&
!(isCESU8 && i == 1 && ch == 0xed && U8_IS_TRAIL(ch2)))
{
break; /* i < inBytes */
}
ch = (ch << 6) + ch2;
++mySource;
i++;
}
else
{
/* stores a partially calculated target*/
cnv->toUnicodeStatus = ch;
cnv->mode = inBytes;
cnv->toULength = (int8_t) i;
goto donefornow;
}
}
// In CESU-8, only surrogates, not supplementary code points, are encoded directly.
if (i == inBytes && (!isCESU8 || i <= 3))
{
/* Remove the accumulated high bits */
ch -= offsetsFromUTF8[inBytes];
/* Normal valid byte when the loop has not prematurely terminated (i < inBytes) */
if (ch <= MAXIMUM_UCS2)
{
/* fits in 16 bits */
*(myTarget++) = (char16_t) ch;
}
else
{
/* write out the surrogates */
*(myTarget++) = U16_LEAD(ch);
ch = U16_TRAIL(ch);
if (myTarget < targetLimit)
{
*(myTarget++) = (char16_t)ch;
}
else
{
/* Put in overflow buffer (not handled here) */
cnv->UCharErrorBuffer[0] = (char16_t) ch;
cnv->UCharErrorBufferLength = 1;
*err = U_BUFFER_OVERFLOW_ERROR;
break;
}
}
}
else
{
cnv->toULength = (int8_t)i;
*err = U_ILLEGAL_CHAR_FOUND;
break;
}
}
}
donefornow:
if (mySource < sourceLimit && myTarget >= targetLimit && U_SUCCESS(*err))
{
/* End of target buffer */
*err = U_BUFFER_OVERFLOW_ERROR;
}
args->target = myTarget;
args->source = (const char *) mySource;
}
static void U_CALLCONV ucnv_toUnicode_UTF8_OFFSETS_LOGIC (UConverterToUnicodeArgs * args,
UErrorCode * err)
{
UConverter *cnv = args->converter;
const unsigned char *mySource = (unsigned char *) args->source;
char16_t *myTarget = args->target;
int32_t *myOffsets = args->offsets;
int32_t offsetNum = 0;
const unsigned char *sourceLimit = (unsigned char *) args->sourceLimit;
const char16_t *targetLimit = args->targetLimit;
unsigned char *toUBytes = cnv->toUBytes;
UBool isCESU8 = hasCESU8Data(cnv);
uint32_t ch, ch2 = 0;
int32_t i, inBytes;
/* Restore size of current sequence */
if (cnv->toULength > 0 && myTarget < targetLimit)
{
inBytes = cnv->mode; /* restore # of bytes to consume */
i = cnv->toULength; /* restore # of bytes consumed */
cnv->toULength = 0;
ch = cnv->toUnicodeStatus;/*Stores the previously calculated ch from a previous call*/
cnv->toUnicodeStatus = 0;
goto morebytes;
}
while (mySource < sourceLimit && myTarget < targetLimit)
{
ch = *(mySource++);
if (U8_IS_SINGLE(ch)) /* Simple case */
{
*(myTarget++) = (char16_t) ch;
*(myOffsets++) = offsetNum++;
}
else
{
toUBytes[0] = (char)ch;
inBytes = U8_COUNT_BYTES_NON_ASCII(ch);
i = 1;
morebytes:
while (i < inBytes)
{
if (mySource < sourceLimit)
{
toUBytes[i] = (char) (ch2 = *mySource);
if (!icu::UTF8::isValidTrail(ch, static_cast<uint8_t>(ch2), i, inBytes) &&
!(isCESU8 && i == 1 && ch == 0xed && U8_IS_TRAIL(ch2)))
{
break; /* i < inBytes */
}
ch = (ch << 6) + ch2;
++mySource;
i++;
}
else
{
cnv->toUnicodeStatus = ch;
cnv->mode = inBytes;
cnv->toULength = (int8_t)i;
goto donefornow;
}
}
// In CESU-8, only surrogates, not supplementary code points, are encoded directly.
if (i == inBytes && (!isCESU8 || i <= 3))
{
/* Remove the accumulated high bits */
ch -= offsetsFromUTF8[inBytes];
/* Normal valid byte when the loop has not prematurely terminated (i < inBytes) */
if (ch <= MAXIMUM_UCS2)
{
/* fits in 16 bits */
*(myTarget++) = (char16_t) ch;
*(myOffsets++) = offsetNum;
}
else
{
/* write out the surrogates */
*(myTarget++) = U16_LEAD(ch);
*(myOffsets++) = offsetNum;
ch = U16_TRAIL(ch);
if (myTarget < targetLimit)
{
*(myTarget++) = (char16_t)ch;
*(myOffsets++) = offsetNum;
}
else
{
cnv->UCharErrorBuffer[0] = (char16_t) ch;
cnv->UCharErrorBufferLength = 1;
*err = U_BUFFER_OVERFLOW_ERROR;
}
}
offsetNum += i;
}
else
{
cnv->toULength = (int8_t)i;
*err = U_ILLEGAL_CHAR_FOUND;
break;
}
}
}
donefornow:
if (mySource < sourceLimit && myTarget >= targetLimit && U_SUCCESS(*err))
{ /* End of target buffer */
*err = U_BUFFER_OVERFLOW_ERROR;
}
args->target = myTarget;
args->source = (const char *) mySource;
args->offsets = myOffsets;
}
U_CDECL_END
U_CFUNC void U_CALLCONV ucnv_fromUnicode_UTF8 (UConverterFromUnicodeArgs * args,
UErrorCode * err)
{
UConverter *cnv = args->converter;
const char16_t *mySource = args->source;
const char16_t *sourceLimit = args->sourceLimit;
uint8_t *myTarget = (uint8_t *) args->target;
const uint8_t *targetLimit = (uint8_t *) args->targetLimit;
uint8_t *tempPtr;
UChar32 ch;
uint8_t tempBuf[4];
int32_t indexToWrite;
UBool isNotCESU8 = !hasCESU8Data(cnv);
if (cnv->fromUChar32 && myTarget < targetLimit)
{
ch = cnv->fromUChar32;
cnv->fromUChar32 = 0;
goto lowsurrogate;
}
while (mySource < sourceLimit && myTarget < targetLimit)
{
ch = *(mySource++);
if (ch < 0x80) /* Single byte */
{
*(myTarget++) = (uint8_t) ch;
}
else if (ch < 0x800) /* Double byte */
{
*(myTarget++) = (uint8_t) ((ch >> 6) | 0xc0);
if (myTarget < targetLimit)
{
*(myTarget++) = (uint8_t) ((ch & 0x3f) | 0x80);
}
else
{
cnv->charErrorBuffer[0] = (uint8_t) ((ch & 0x3f) | 0x80);
cnv->charErrorBufferLength = 1;
*err = U_BUFFER_OVERFLOW_ERROR;
}
}
else {
/* Check for surrogates */
if(U16_IS_SURROGATE(ch) && isNotCESU8) {
lowsurrogate:
if (mySource < sourceLimit) {
/* test both code units */
if(U16_IS_SURROGATE_LEAD(ch) && U16_IS_TRAIL(*mySource)) {
/* convert and consume this supplementary code point */
ch=U16_GET_SUPPLEMENTARY(ch, *mySource);
++mySource;
/* exit this condition tree */
}
else {
/* this is an unpaired trail or lead code unit */
/* callback(illegal) */
cnv->fromUChar32 = ch;
*err = U_ILLEGAL_CHAR_FOUND;
break;
}
}
else {
/* no more input */
cnv->fromUChar32 = ch;
break;
}
}
/* Do we write the buffer directly for speed,
or do we have to be careful about target buffer space? */
tempPtr = (((targetLimit - myTarget) >= 4) ? myTarget : tempBuf);
if (ch <= MAXIMUM_UCS2) {
indexToWrite = 2;
tempPtr[0] = (uint8_t) ((ch >> 12) | 0xe0);
}
else {
indexToWrite = 3;
tempPtr[0] = (uint8_t) ((ch >> 18) | 0xf0);
tempPtr[1] = (uint8_t) (((ch >> 12) & 0x3f) | 0x80);
}
tempPtr[indexToWrite-1] = (uint8_t) (((ch >> 6) & 0x3f) | 0x80);
tempPtr[indexToWrite] = (uint8_t) ((ch & 0x3f) | 0x80);
if (tempPtr == myTarget) {
/* There was enough space to write the codepoint directly. */
myTarget += (indexToWrite + 1);
}
else {
/* We might run out of room soon. Write it slowly. */
for (; tempPtr <= (tempBuf + indexToWrite); tempPtr++) {
if (myTarget < targetLimit) {
*(myTarget++) = *tempPtr;
}
else {
cnv->charErrorBuffer[cnv->charErrorBufferLength++] = *tempPtr;
*err = U_BUFFER_OVERFLOW_ERROR;
}
}
}
}
}
if (mySource < sourceLimit && myTarget >= targetLimit && U_SUCCESS(*err))
{
*err = U_BUFFER_OVERFLOW_ERROR;
}
args->target = (char *) myTarget;
args->source = mySource;
}
U_CFUNC void U_CALLCONV ucnv_fromUnicode_UTF8_OFFSETS_LOGIC (UConverterFromUnicodeArgs * args,
UErrorCode * err)
{
UConverter *cnv = args->converter;
const char16_t *mySource = args->source;
int32_t *myOffsets = args->offsets;
const char16_t *sourceLimit = args->sourceLimit;
uint8_t *myTarget = (uint8_t *) args->target;
const uint8_t *targetLimit = (uint8_t *) args->targetLimit;
uint8_t *tempPtr;
UChar32 ch;
int32_t offsetNum, nextSourceIndex;
int32_t indexToWrite;
uint8_t tempBuf[4];
UBool isNotCESU8 = !hasCESU8Data(cnv);
if (cnv->fromUChar32 && myTarget < targetLimit)
{
ch = cnv->fromUChar32;
cnv->fromUChar32 = 0;
offsetNum = -1;
nextSourceIndex = 0;
goto lowsurrogate;
} else {
offsetNum = 0;
}
while (mySource < sourceLimit && myTarget < targetLimit)
{
ch = *(mySource++);
if (ch < 0x80) /* Single byte */
{
*(myOffsets++) = offsetNum++;
*(myTarget++) = (char) ch;
}
else if (ch < 0x800) /* Double byte */
{
*(myOffsets++) = offsetNum;
*(myTarget++) = (uint8_t) ((ch >> 6) | 0xc0);
if (myTarget < targetLimit)
{
*(myOffsets++) = offsetNum++;
*(myTarget++) = (uint8_t) ((ch & 0x3f) | 0x80);
}
else
{
cnv->charErrorBuffer[0] = (uint8_t) ((ch & 0x3f) | 0x80);
cnv->charErrorBufferLength = 1;
*err = U_BUFFER_OVERFLOW_ERROR;
}
}
else
/* Check for surrogates */
{
nextSourceIndex = offsetNum + 1;
if(U16_IS_SURROGATE(ch) && isNotCESU8) {
lowsurrogate:
if (mySource < sourceLimit) {
/* test both code units */
if(U16_IS_SURROGATE_LEAD(ch) && U16_IS_TRAIL(*mySource)) {
/* convert and consume this supplementary code point */
ch=U16_GET_SUPPLEMENTARY(ch, *mySource);
++mySource;
++nextSourceIndex;
/* exit this condition tree */
}
else {
/* this is an unpaired trail or lead code unit */
/* callback(illegal) */
cnv->fromUChar32 = ch;
*err = U_ILLEGAL_CHAR_FOUND;
break;
}
}
else {
/* no more input */
cnv->fromUChar32 = ch;
break;
}
}
/* Do we write the buffer directly for speed,
or do we have to be careful about target buffer space? */
tempPtr = (((targetLimit - myTarget) >= 4) ? myTarget : tempBuf);
if (ch <= MAXIMUM_UCS2) {
indexToWrite = 2;
tempPtr[0] = (uint8_t) ((ch >> 12) | 0xe0);
}
else {
indexToWrite = 3;
tempPtr[0] = (uint8_t) ((ch >> 18) | 0xf0);
tempPtr[1] = (uint8_t) (((ch >> 12) & 0x3f) | 0x80);
}
tempPtr[indexToWrite-1] = (uint8_t) (((ch >> 6) & 0x3f) | 0x80);
tempPtr[indexToWrite] = (uint8_t) ((ch & 0x3f) | 0x80);
if (tempPtr == myTarget) {
/* There was enough space to write the codepoint directly. */
myTarget += (indexToWrite + 1);
myOffsets[0] = offsetNum;
myOffsets[1] = offsetNum;
myOffsets[2] = offsetNum;
if (indexToWrite >= 3) {
myOffsets[3] = offsetNum;
}
myOffsets += (indexToWrite + 1);
}
else {
/* We might run out of room soon. Write it slowly. */
for (; tempPtr <= (tempBuf + indexToWrite); tempPtr++) {
if (myTarget < targetLimit)
{
*(myOffsets++) = offsetNum;
*(myTarget++) = *tempPtr;
}
else
{
cnv->charErrorBuffer[cnv->charErrorBufferLength++] = *tempPtr;
*err = U_BUFFER_OVERFLOW_ERROR;
}
}
}
offsetNum = nextSourceIndex;
}
}
if (mySource < sourceLimit && myTarget >= targetLimit && U_SUCCESS(*err))
{
*err = U_BUFFER_OVERFLOW_ERROR;
}
args->target = (char *) myTarget;
args->source = mySource;
args->offsets = myOffsets;
}
U_CDECL_BEGIN
static UChar32 U_CALLCONV ucnv_getNextUChar_UTF8(UConverterToUnicodeArgs *args,
UErrorCode *err) {
UConverter *cnv;
const uint8_t *sourceInitial;
const uint8_t *source;
uint8_t myByte;
UChar32 ch;
int8_t i;
/* UTF-8 only here, the framework handles CESU-8 to combine surrogate pairs */
cnv = args->converter;
sourceInitial = source = (const uint8_t *)args->source;
if (source >= (const uint8_t *)args->sourceLimit)
{
/* no input */
*err = U_INDEX_OUTOFBOUNDS_ERROR;
return 0xffff;
}
myByte = *(source++);
if (U8_IS_SINGLE(myByte))
{
args->source = (const char *)source;
return (UChar32)myByte;
}
uint16_t countTrailBytes = U8_COUNT_TRAIL_BYTES(myByte);
if (countTrailBytes == 0) {
cnv->toUBytes[0] = myByte;
cnv->toULength = 1;
*err = U_ILLEGAL_CHAR_FOUND;
args->source = (const char *)source;
return 0xffff;
}
/*The byte sequence is longer than the buffer area passed*/
if (((const char *)source + countTrailBytes) > args->sourceLimit)
{
/* check if all of the remaining bytes are trail bytes */
uint16_t extraBytesToWrite = countTrailBytes + 1;
cnv->toUBytes[0] = myByte;
i = 1;
*err = U_TRUNCATED_CHAR_FOUND;
while(source < (const uint8_t *)args->sourceLimit) {
uint8_t b = *source;
if(icu::UTF8::isValidTrail(myByte, b, i, extraBytesToWrite)) {
cnv->toUBytes[i++] = b;
++source;
} else {
/* error even before we run out of input */
*err = U_ILLEGAL_CHAR_FOUND;
break;
}
}
cnv->toULength = i;
args->source = (const char *)source;
return 0xffff;
}
ch = myByte << 6;
if(countTrailBytes == 2) {
uint8_t t1 = *source, t2;
if(U8_IS_VALID_LEAD3_AND_T1(myByte, t1) && U8_IS_TRAIL(t2 = *++source)) {
args->source = (const char *)(source + 1);
return (((ch + t1) << 6) + t2) - offsetsFromUTF8[3];
}
} else if(countTrailBytes == 1) {
uint8_t t1 = *source;
if(U8_IS_TRAIL(t1)) {
args->source = (const char *)(source + 1);
return (ch + t1) - offsetsFromUTF8[2];
}
} else { // countTrailBytes == 3
uint8_t t1 = *source, t2, t3;
if(U8_IS_VALID_LEAD4_AND_T1(myByte, t1) && U8_IS_TRAIL(t2 = *++source) &&
U8_IS_TRAIL(t3 = *++source)) {
args->source = (const char *)(source + 1);
return (((((ch + t1) << 6) + t2) << 6) + t3) - offsetsFromUTF8[4];
}
}
args->source = (const char *)source;
for(i = 0; sourceInitial < source; ++i) {
cnv->toUBytes[i] = *sourceInitial++;
}
cnv->toULength = i;
*err = U_ILLEGAL_CHAR_FOUND;
return 0xffff;
}
U_CDECL_END
/* UTF-8-from-UTF-8 conversion functions ------------------------------------ */
U_CDECL_BEGIN
/* "Convert" UTF-8 to UTF-8: Validate and copy. Modified from ucnv_DBCSFromUTF8(). */
static void U_CALLCONV
ucnv_UTF8FromUTF8(UConverterFromUnicodeArgs *pFromUArgs,
UConverterToUnicodeArgs *pToUArgs,
UErrorCode *pErrorCode) {
UConverter *utf8;
const uint8_t *source, *sourceLimit;
uint8_t *target;
int32_t targetCapacity;
int32_t count;
int8_t oldToULength, toULength, toULimit;
UChar32 c;
uint8_t b, t1, t2;
/* set up the local pointers */
utf8=pToUArgs->converter;
source=(uint8_t *)pToUArgs->source;
sourceLimit=(uint8_t *)pToUArgs->sourceLimit;
target=(uint8_t *)pFromUArgs->target;
targetCapacity=(int32_t)(pFromUArgs->targetLimit-pFromUArgs->target);
/* get the converter state from the UTF-8 UConverter */
if(utf8->toULength > 0) {
toULength=oldToULength=utf8->toULength;
toULimit=(int8_t)utf8->mode;
c=(UChar32)utf8->toUnicodeStatus;
} else {
toULength=oldToULength=toULimit=0;
c = 0;
}
count=(int32_t)(sourceLimit-source)+oldToULength;
if(count<toULimit) {
/*
* Not enough input to complete the partial character.
* Jump to moreBytes below - it will not output to target.
*/
} else if(targetCapacity<toULimit) {
/*
* Not enough target capacity to output the partial character.
* Let the standard converter handle this.
*/
*pErrorCode=U_USING_DEFAULT_WARNING;
return;
} else {
// Use a single counter for source and target, counting the minimum of
// the source length and the target capacity.
// Let the standard converter handle edge cases.
if(count>targetCapacity) {
count=targetCapacity;
}
// The conversion loop checks count>0 only once per character.
// If the buffer ends with a truncated sequence,
// then we reduce the count to stop before that,
// and collect the remaining bytes after the conversion loop.
// Do not go back into the bytes that will be read for finishing a partial
// sequence from the previous buffer.
int32_t length=count-toULength;
U8_TRUNCATE_IF_INCOMPLETE(source, 0, length);
count=toULength+length;
}
if(c!=0) {
utf8->toUnicodeStatus=0;
utf8->toULength=0;
goto moreBytes;
/* See note in ucnv_SBCSFromUTF8() about this goto. */
}
/* conversion loop */
while(count>0) {
b=*source++;
if(U8_IS_SINGLE(b)) {
/* convert ASCII */
*target++=b;
--count;
continue;
} else {
if(b>=0xe0) {
if( /* handle U+0800..U+FFFF inline */
b<0xf0 &&
U8_IS_VALID_LEAD3_AND_T1(b, t1=source[0]) &&
U8_IS_TRAIL(t2=source[1])
) {
source+=2;
*target++=b;
*target++=t1;
*target++=t2;
count-=3;
continue;
}
} else {
if( /* handle U+0080..U+07FF inline */
b>=0xc2 &&
U8_IS_TRAIL(t1=*source)
) {
++source;
*target++=b;
*target++=t1;
count-=2;
continue;
}
}
/* handle "complicated" and error cases, and continuing partial characters */
oldToULength=0;
toULength=1;
toULimit=U8_COUNT_BYTES_NON_ASCII(b);
c=b;
moreBytes:
while(toULength<toULimit) {
if(source<sourceLimit) {
b=*source;
if(icu::UTF8::isValidTrail(c, b, toULength, toULimit)) {
++source;
++toULength;
c=(c<<6)+b;
} else {
break; /* sequence too short, stop with toULength<toULimit */
}
} else {
/* store the partial UTF-8 character, compatible with the regular UTF-8 converter */
source-=(toULength-oldToULength);
while(oldToULength<toULength) {
utf8->toUBytes[oldToULength++]=*source++;
}
utf8->toUnicodeStatus=c;
utf8->toULength=toULength;
utf8->mode=toULimit;
pToUArgs->source=(char *)source;
pFromUArgs->target=(char *)target;
return;
}
}
if(toULength!=toULimit) {
/* error handling: illegal UTF-8 byte sequence */
source-=(toULength-oldToULength);
while(oldToULength<toULength) {
utf8->toUBytes[oldToULength++]=*source++;
}
utf8->toULength=toULength;
pToUArgs->source=(char *)source;
pFromUArgs->target=(char *)target;
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
return;
}
/* copy the legal byte sequence to the target */
{
int8_t i;
for(i=0; i<oldToULength; ++i) {
*target++=utf8->toUBytes[i];
}
source-=(toULength-oldToULength);
for(; i<toULength; ++i) {
*target++=*source++;
}
count-=toULength;
}
}
}
U_ASSERT(count>=0);
if(U_SUCCESS(*pErrorCode) && source<sourceLimit) {
if(target==(const uint8_t *)pFromUArgs->targetLimit) {
*pErrorCode=U_BUFFER_OVERFLOW_ERROR;
} else {
b=*source;
toULimit=U8_COUNT_BYTES(b);
if(toULimit>(sourceLimit-source)) {
/* collect a truncated byte sequence */
toULength=0;
c=b;
for(;;) {
utf8->toUBytes[toULength++]=b;
if(++source==sourceLimit) {
/* partial byte sequence at end of source */
utf8->toUnicodeStatus=c;
utf8->toULength=toULength;
utf8->mode=toULimit;
break;
} else if(!icu::UTF8::isValidTrail(c, b=*source, toULength, toULimit)) {
utf8->toULength=toULength;
*pErrorCode=U_ILLEGAL_CHAR_FOUND;
break;
}
c=(c<<6)+b;
}
} else {
/* partial-sequence target overflow: fall back to the pivoting implementation */
*pErrorCode=U_USING_DEFAULT_WARNING;
}
}
}
/* write back the updated pointers */
pToUArgs->source=(char *)source;
pFromUArgs->target=(char *)target;
}
U_CDECL_END
/* UTF-8 converter data ----------------------------------------------------- */
static const UConverterImpl _UTF8Impl={
UCNV_UTF8,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
ucnv_toUnicode_UTF8,
ucnv_toUnicode_UTF8_OFFSETS_LOGIC,
ucnv_fromUnicode_UTF8,
ucnv_fromUnicode_UTF8_OFFSETS_LOGIC,
ucnv_getNextUChar_UTF8,
nullptr,
nullptr,
nullptr,
nullptr,
ucnv_getNonSurrogateUnicodeSet,
ucnv_UTF8FromUTF8,
ucnv_UTF8FromUTF8
};
/* The 1208 CCSID refers to any version of Unicode of UTF-8 */
static const UConverterStaticData _UTF8StaticData={
sizeof(UConverterStaticData),
"UTF-8",
1208, UCNV_IBM, UCNV_UTF8,
1, 3, /* max 3 bytes per char16_t from UTF-8 (4 bytes from surrogate _pair_) */
{ 0xef, 0xbf, 0xbd, 0 },3,false,false,
0,
0,
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */
};
const UConverterSharedData _UTF8Data=
UCNV_IMMUTABLE_SHARED_DATA_INITIALIZER(&_UTF8StaticData, &_UTF8Impl);
/* CESU-8 converter data ---------------------------------------------------- */
static const UConverterImpl _CESU8Impl={
UCNV_CESU8,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
ucnv_toUnicode_UTF8,
ucnv_toUnicode_UTF8_OFFSETS_LOGIC,
ucnv_fromUnicode_UTF8,
ucnv_fromUnicode_UTF8_OFFSETS_LOGIC,
nullptr,
nullptr,
nullptr,
nullptr,
nullptr,
ucnv_getCompleteUnicodeSet,
nullptr,
nullptr
};
static const UConverterStaticData _CESU8StaticData={
sizeof(UConverterStaticData),
"CESU-8",
9400, /* CCSID for CESU-8 */
UCNV_UNKNOWN, UCNV_CESU8, 1, 3,
{ 0xef, 0xbf, 0xbd, 0 },3,false,false,
0,
0,
{ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 } /* reserved */
};
const UConverterSharedData _CESU8Data=
UCNV_IMMUTABLE_SHARED_DATA_INITIALIZER(&_CESU8StaticData, &_CESU8Impl);
#endif