godot/thirdparty/b2d_convexdecomp/b2Glue.h
Rémi Verschelde 277b24dfb7 Make core/ includes absolute, remove subfolders from include path
This allows more consistency in the manner we include core headers,
where previously there would be a mix of absolute, relative and
include path-dependent includes.
2018-09-12 09:52:22 +02:00

174 lines
4.2 KiB
C++

/*
* Copyright (c) 2006-2009 Erin Catto http://www.gphysics.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgment in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
#ifndef B2GLUE_H
#define B2GLUE_H
#include "core/math/vector2.h"
#include <limits.h>
namespace b2ConvexDecomp {
typedef real_t float32;
typedef int32_t int32;
static inline float32 b2Sqrt(float32 val) { return Math::sqrt(val); }
#define b2_maxFloat FLT_MAX
#define b2_epsilon CMP_EPSILON
#define b2_pi 3.14159265359f
#define b2_maxPolygonVertices 16
#define b2Max MAX
#define b2Min MIN
#define b2Clamp CLAMP
#define b2Abs ABS
/// A small length used as a collision and constraint tolerance. Usually it is
/// chosen to be numerically significant, but visually insignificant.
#define b2_linearSlop 0.005f
/// A small angle used as a collision and constraint tolerance. Usually it is
/// chosen to be numerically significant, but visually insignificant.
#define b2_angularSlop (2.0f / 180.0f * b2_pi)
/// A 2D column vector.
struct b2Vec2
{
/// Default constructor does nothing (for performance).
b2Vec2() {}
/// Construct using coordinates.
b2Vec2(float32 x, float32 y) : x(x), y(y) {}
/// Set this vector to all zeros.
void SetZero() { x = 0.0f; y = 0.0f; }
/// Set this vector to some specified coordinates.
void Set(float32 x_, float32 y_) { x = x_; y = y_; }
/// Negate this vector.
b2Vec2 operator -() const { b2Vec2 v; v.Set(-x, -y); return v; }
/// Read from and indexed element.
float32 operator () (int32 i) const
{
return (&x)[i];
}
/// Write to an indexed element.
float32& operator () (int32 i)
{
return (&x)[i];
}
/// Add a vector to this vector.
void operator += (const b2Vec2& v)
{
x += v.x; y += v.y;
}
/// Subtract a vector from this vector.
void operator -= (const b2Vec2& v)
{
x -= v.x; y -= v.y;
}
/// Multiply this vector by a scalar.
void operator *= (float32 a)
{
x *= a; y *= a;
}
/// Get the length of this vector (the norm).
float32 Length() const
{
return b2Sqrt(x * x + y * y);
}
/// Get the length squared. For performance, use this instead of
/// b2Vec2::Length (if possible).
float32 LengthSquared() const
{
return x * x + y * y;
}
bool operator==(const b2Vec2& p_v) const {
return x==p_v.x && y==p_v.y;
}
b2Vec2 operator+(const b2Vec2& p_v) const {
return b2Vec2(x+p_v.x,y+p_v.y);
}
b2Vec2 operator-(const b2Vec2& p_v) const {
return b2Vec2(x-p_v.x,y-p_v.y);
}
b2Vec2 operator*(float32 f) const {
return b2Vec2(f*x,f*y);
}
/// Convert this vector into a unit vector. Returns the length.
float32 Normalize()
{
float32 length = Length();
if (length < b2_epsilon)
{
return 0.0f;
}
float32 invLength = 1.0f / length;
x *= invLength;
y *= invLength;
return length;
}
/*
/// Does this vector contain finite coordinates?
bool IsValid() const
{
return b2IsValid(x) && b2IsValid(y);
}
*/
float32 x, y;
};
inline b2Vec2 operator*(float32 f,const b2Vec2& p_v) {
return b2Vec2(f*p_v.x,f*p_v.y);
}
/// Perform the dot product on two vectors.
inline float32 b2Dot(const b2Vec2& a, const b2Vec2& b)
{
return a.x * b.x + a.y * b.y;
}
/// Perform the cross product on two vectors. In 2D this produces a scalar.
inline float32 b2Cross(const b2Vec2& a, const b2Vec2& b)
{
return a.x * b.y - a.y * b.x;
}
/// Perform the cross product on a vector and a scalar. In 2D this produces
/// a vector.
inline b2Vec2 b2Cross(const b2Vec2& a, float32 s)
{
return b2Vec2(s * a.y, -s * a.x);
}
}
#endif