ladybird/Kernel/Process.h

531 lines
17 KiB
C
Raw Normal View History

#pragma once
#include "types.h"
#include "TSS.h"
#include "i386.h"
#include "TTY.h"
#include "Syscall.h"
2019-01-23 05:13:17 +01:00
#include <Kernel/VirtualFileSystem.h>
#include <Kernel/UnixTypes.h>
2018-12-03 01:18:54 +01:00
#include <AK/InlineLinkedList.h>
#include <AK/AKString.h>
2018-12-03 01:18:54 +01:00
#include <AK/Vector.h>
#include <AK/WeakPtr.h>
#include <AK/Weakable.h>
#include <AK/Lock.h>
2018-11-07 11:37:54 +01:00
class FileDescriptor;
class PageDirectory;
class Region;
class VMObject;
class Zone;
class WSWindow;
class GraphicsBitmap;
#define COOL_GLOBALS
#ifdef COOL_GLOBALS
struct CoolGlobals {
pid_t current_pid;
};
extern CoolGlobals* g_cool_globals;
#endif
enum class ShouldUnblockProcess { No = 0, Yes };
struct SignalActionData {
LinearAddress handler_or_sigaction;
dword mask { 0 };
int flags { 0 };
LinearAddress restorer;
};
struct DisplayInfo {
unsigned width;
unsigned height;
unsigned bpp;
unsigned pitch;
};
class Process : public InlineLinkedListNode<Process>, public Weakable<Process> {
friend class InlineLinkedListNode<Process>;
public:
2018-12-24 23:10:48 +01:00
static Process* create_kernel_process(String&& name, void (*entry)());
2018-11-06 13:33:06 +01:00
static Process* create_user_process(const String& path, uid_t, gid_t, pid_t ppid, int& error, Vector<String>&& arguments = Vector<String>(), Vector<String>&& environment = Vector<String>(), TTY* = nullptr);
~Process();
static Vector<pid_t> all_pids();
static Vector<Process*> all_processes();
static void finalize_dying_processes();
enum State {
Invalid = 0,
Runnable,
Running,
Skip1SchedulerPass,
Skip0SchedulerPasses,
Dying,
Dead,
Stopped,
BeingInspected,
BlockedLurking,
BlockedSleep,
BlockedWait,
BlockedRead,
BlockedWrite,
BlockedSignal,
BlockedSelect,
BlockedConnect,
};
enum Priority {
LowPriority,
NormalPriority,
HighPriority,
};
enum RingLevel {
Ring0 = 0,
Ring3 = 3,
};
bool is_ring0() const { return m_ring == Ring0; }
bool is_ring3() const { return m_ring == Ring3; }
bool is_stopped() const { return m_state == Stopped; }
bool is_blocked() const
{
return m_state == BlockedSleep || m_state == BlockedWait || m_state == BlockedRead || m_state == BlockedWrite || m_state == BlockedSignal || m_state == BlockedSelect;
}
PageDirectory& page_directory() { return *m_page_directory; }
const PageDirectory& page_directory() const { return *m_page_directory; }
bool in_kernel() const { return (m_tss.cs & 0x03) == 0; }
2018-11-07 21:38:18 +01:00
static Process* from_pid(pid_t);
void set_priority(Priority p) { m_priority = p; }
Priority priority() const { return m_priority; }
const String& name() const { return m_name; }
pid_t pid() const { return m_pid; }
pid_t sid() const { return m_sid; }
pid_t pgid() const { return m_pgid; }
dword ticks() const { return m_ticks; }
word selector() const { return m_far_ptr.selector; }
TSS32& tss() { return m_tss; }
State state() const { return m_state; }
uid_t uid() const { return m_uid; }
gid_t gid() const { return m_gid; }
const HashTable<gid_t>& gids() const { return m_gids; }
uid_t euid() const { return m_euid; }
gid_t egid() const { return m_egid; }
2018-11-06 13:33:06 +01:00
pid_t ppid() const { return m_ppid; }
2018-10-25 10:15:13 +02:00
mode_t umask() const { return m_umask; }
bool in_group(gid_t) const;
const FarPtr& far_ptr() const { return m_far_ptr; }
2018-11-07 11:37:54 +01:00
FileDescriptor* file_descriptor(int fd);
const FileDescriptor* file_descriptor(int fd) const;
void block(Process::State);
void unblock();
void set_wakeup_time(dword t) { m_wakeup_time = t; }
dword wakeup_time() const { return m_wakeup_time; }
template<typename Callback> static void for_each(Callback);
template<typename Callback> static void for_each_in_pgrp(pid_t, Callback);
template<typename Callback> static void for_each_in_state(State, Callback);
template<typename Callback> static void for_each_living(Callback);
template<typename Callback> void for_each_child(Callback);
bool tick();
void set_ticks_left(dword t) { m_ticks_left = t; }
dword ticks_left() const { return m_ticks_left; }
dword kernel_stack_base() const { return (dword)m_kernel_stack; };
dword kernel_stack_for_signal_handler_base() const { return (dword)m_kernel_stack_for_signal_handler; };
void set_selector(word s) { m_far_ptr.selector = s; }
void set_state(State s) { m_state = s; }
void die();
void finalize();
pid_t sys$setsid();
pid_t sys$getsid(pid_t);
int sys$setpgid(pid_t pid, pid_t pgid);
pid_t sys$getpgrp();
pid_t sys$getpgid(pid_t);
uid_t sys$getuid();
gid_t sys$getgid();
uid_t sys$geteuid();
gid_t sys$getegid();
pid_t sys$getpid();
2018-11-06 13:33:06 +01:00
pid_t sys$getppid();
2018-11-06 13:40:23 +01:00
mode_t sys$umask(mode_t);
int sys$open(const char* path, int options, mode_t mode = 0);
int sys$close(int fd);
ssize_t sys$read(int fd, byte*, ssize_t);
ssize_t sys$write(int fd, const byte*, ssize_t);
int sys$fstat(int fd, stat*);
int sys$lstat(const char*, stat*);
int sys$stat(const char*, stat*);
int sys$lseek(int fd, off_t, int whence);
int sys$kill(pid_t pid, int sig);
int sys$geterror() { return m_error; }
[[noreturn]] void sys$exit(int status);
[[noreturn]] void sys$sigreturn();
pid_t sys$waitpid(pid_t, int* wstatus, int options);
void* sys$mmap(const Syscall::SC_mmap_params*);
int sys$munmap(void*, size_t size);
int sys$set_mmap_name(void*, size_t, const char*);
int sys$select(const Syscall::SC_select_params*);
int sys$poll(pollfd*, int nfds, int timeout);
ssize_t sys$get_dir_entries(int fd, void*, ssize_t);
int sys$getcwd(char*, ssize_t);
int sys$chdir(const char*);
int sys$sleep(unsigned seconds);
int sys$usleep(useconds_t usec);
int sys$gettimeofday(timeval*);
int sys$gethostname(char*, ssize_t);
int sys$uname(utsname*);
int sys$readlink(const char*, char*, ssize_t);
int sys$ttyname_r(int fd, char*, ssize_t);
int sys$ptsname_r(int fd, char*, ssize_t);
pid_t sys$fork(RegisterDump&);
int sys$execve(const char* filename, const char** argv, const char** envp);
int sys$isatty(int fd);
int sys$getdtablesize();
int sys$dup(int oldfd);
int sys$dup2(int oldfd, int newfd);
int sys$sigaction(int signum, const sigaction* act, sigaction* old_act);
int sys$sigprocmask(int how, const sigset_t* set, sigset_t* old_set);
int sys$sigpending(sigset_t*);
int sys$getgroups(ssize_t, gid_t*);
int sys$setgroups(ssize_t, const gid_t*);
int sys$pipe(int* pipefd);
int sys$killpg(int pgrp, int sig);
int sys$setgid(gid_t);
int sys$setuid(uid_t);
unsigned sys$alarm(unsigned seconds);
int sys$access(const char* pathname, int mode);
int sys$fcntl(int fd, int cmd, dword extra_arg);
int sys$ioctl(int fd, unsigned request, unsigned arg);
int sys$mkdir(const char* pathname, mode_t mode);
clock_t sys$times(tms*);
int sys$utime(const char* pathname, const struct utimbuf*);
int sys$link(const char* old_path, const char* new_path);
int sys$unlink(const char* pathname);
int sys$symlink(const char* target, const char* linkpath);
int sys$rmdir(const char* pathname);
int sys$read_tsc(dword* lsw, dword* msw);
int sys$chmod(const char* pathname, mode_t);
int sys$fchmod(int fd, mode_t);
int sys$chown(const char* pathname, uid_t, gid_t);
int sys$socket(int domain, int type, int protocol);
int sys$bind(int sockfd, const sockaddr* addr, socklen_t);
int sys$listen(int sockfd, int backlog);
int sys$accept(int sockfd, sockaddr*, socklen_t*);
int sys$connect(int sockfd, const sockaddr*, socklen_t);
int sys$restore_signal_mask(dword mask);
int sys$create_shared_buffer(pid_t peer_pid, size_t, void** buffer);
void* sys$get_shared_buffer(int shared_buffer_id);
int sys$release_shared_buffer(int shared_buffer_id);
KResult wait_for_connect(Socket&);
static void initialize();
[[noreturn]] void crash();
[[nodiscard]] static int reap(Process&);
const TTY* tty() const { return m_tty; }
void set_tty(TTY* tty) { m_tty = tty; }
size_t region_count() const { return m_regions.size(); }
const Vector<Retained<Region>>& regions() const { return m_regions; }
void dump_regions();
2018-10-18 14:53:00 +02:00
void did_schedule() { ++m_times_scheduled; }
dword times_scheduled() const { return m_times_scheduled; }
dword m_ticks_in_user { 0 };
dword m_ticks_in_kernel { 0 };
dword m_ticks_in_user_for_dead_children { 0 };
dword m_ticks_in_kernel_for_dead_children { 0 };
pid_t waitee_pid() const { return m_waitee_pid; }
dword frame_ptr() const { return m_tss.ebp; }
dword stack_ptr() const { return m_tss.esp; }
dword stack_top() const { return m_tss.ss == 0x10 ? m_stack_top0 : m_stack_top3; }
bool validate_read_from_kernel(LinearAddress) const;
bool validate_read(const void*, ssize_t) const;
bool validate_write(void*, ssize_t) const;
bool validate_read_str(const char* str);
template<typename T> bool validate_read_typed(T* value, size_t count = 1) { return validate_read(value, sizeof(T) * count); }
template<typename T> bool validate_write_typed(T* value, size_t count = 1) { return validate_write(value, sizeof(T) * count); }
Inode& cwd_inode();
Inode* executable_inode() { return m_executable.ptr(); }
int number_of_open_file_descriptors() const;
int max_open_file_descriptors() const { return m_max_open_file_descriptors; }
void send_signal(byte signal, Process* sender);
ShouldUnblockProcess dispatch_one_pending_signal();
ShouldUnblockProcess dispatch_signal(byte signal);
bool has_unmasked_pending_signals() const;
void terminate_due_to_signal(byte signal);
size_t amount_virtual() const;
size_t amount_resident() const;
size_t amount_shared() const;
Process* fork(RegisterDump&);
int exec(String path, Vector<String> arguments, Vector<String> environment);
bool is_superuser() const { return m_euid == 0; }
FPUState& fpu_state() { return m_fpu_state; }
bool has_used_fpu() const { return m_has_used_fpu; }
void set_has_used_fpu(bool b) { m_has_used_fpu = b; }
Region* allocate_region_with_vmo(LinearAddress, size_t, Retained<VMObject>&&, size_t offset_in_vmo, String&& name, bool is_readable, bool is_writable);
Region* allocate_file_backed_region(LinearAddress, size_t, RetainPtr<Inode>&&, String&& name, bool is_readable, bool is_writable);
Region* allocate_region(LinearAddress, size_t, String&& name, bool is_readable = true, bool is_writable = true, bool commit = true);
bool deallocate_region(Region& region);
private:
friend class MemoryManager;
friend class Scheduler;
friend class Region;
Process(String&& name, uid_t, gid_t, pid_t ppid, RingLevel, RetainPtr<Inode>&& cwd = nullptr, RetainPtr<Inode>&& executable = nullptr, TTY* = nullptr, Process* fork_parent = nullptr);
int do_exec(String path, Vector<String> arguments, Vector<String> environment);
void push_value_on_stack(dword);
void make_userspace_stack(Vector<String> arguments, Vector<String> environment);
int alloc_fd();
void set_default_signal_dispositions();
void disown_all_shared_buffers();
void create_signal_trampolines_if_needed();
RetainPtr<PageDirectory> m_page_directory;
Process* m_prev { nullptr };
Process* m_next { nullptr };
String m_name;
void (*m_entry)() { nullptr };
pid_t m_pid { 0 };
uid_t m_uid { 0 };
gid_t m_gid { 0 };
uid_t m_euid { 0 };
gid_t m_egid { 0 };
pid_t m_sid { 0 };
pid_t m_pgid { 0 };
dword m_ticks { 0 };
dword m_ticks_left { 0 };
dword m_stack_top0 { 0 };
dword m_stack_top3 { 0 };
FarPtr m_far_ptr;
State m_state { Invalid };
Priority m_priority { NormalPriority };
dword m_wakeup_time { 0 };
TSS32 m_tss;
TSS32 m_tss_to_resume_kernel;
FPUState m_fpu_state;
struct FileDescriptorAndFlags {
operator bool() const { return !!descriptor; }
void clear() { descriptor = nullptr; flags = 0; }
void set(Retained<FileDescriptor>&& d, dword f = 0) { descriptor = move(d); flags = f; }
RetainPtr<FileDescriptor> descriptor;
dword flags { 0 };
};
Vector<FileDescriptorAndFlags> m_fds;
RingLevel m_ring { Ring0 };
int m_error { 0 };
void* m_kernel_stack { nullptr };
void* m_kernel_stack_for_signal_handler { nullptr };
dword m_times_scheduled { 0 };
pid_t m_waitee_pid { -1 };
int m_blocked_fd { -1 };
Vector<int> m_select_read_fds;
Vector<int> m_select_write_fds;
Vector<int> m_select_exceptional_fds;
timeval m_select_timeout;
bool m_select_has_timeout { false };
int m_max_open_file_descriptors { 16 };
SignalActionData m_signal_action_data[32];
dword m_pending_signals { 0 };
dword m_signal_mask { 0 };
RetainPtr<Socket> m_blocked_connecting_socket;
byte m_termination_status { 0 };
byte m_termination_signal { 0 };
RetainPtr<Inode> m_cwd;
RetainPtr<Inode> m_executable;
TTY* m_tty { nullptr };
Region* region_from_range(LinearAddress, size_t);
2018-10-18 14:53:00 +02:00
Vector<Retained<Region>> m_regions;
2018-10-18 14:53:00 +02:00
// FIXME: Implement some kind of ASLR?
LinearAddress m_next_region;
LinearAddress m_return_to_ring3_from_signal_trampoline;
LinearAddress m_return_to_ring0_from_signal_trampoline;
2018-11-06 13:33:06 +01:00
pid_t m_ppid { 0 };
2018-11-06 13:40:23 +01:00
mode_t m_umask { 022 };
bool m_was_interrupted_while_blocked { false };
static void notify_waiters(pid_t waitee, int exit_status, int signal);
HashTable<gid_t> m_gids;
Region* m_signal_stack_user_region { nullptr };
RetainPtr<Region> m_display_framebuffer_region;
2019-01-13 01:59:38 +01:00
bool m_has_used_fpu { false };
};
extern Process* current;
class ProcessInspectionHandle {
public:
ProcessInspectionHandle(Process& process)
: m_process(process)
, m_original_state(process.state())
{
if (&process != current)
m_process.set_state(Process::BeingInspected);
}
~ProcessInspectionHandle()
{
m_process.set_state(m_original_state);
}
Process& process() { return m_process; }
static OwnPtr<ProcessInspectionHandle> from_pid(pid_t pid)
{
InterruptDisabler disabler;
auto* process = Process::from_pid(pid);
if (process)
return make<ProcessInspectionHandle>(*process);
return nullptr;
}
Process* operator->() { return &m_process; }
Process& operator*() { return m_process; }
private:
Process& m_process;
Process::State m_original_state { Process::Invalid };
};
extern const char* to_string(Process::State);
extern const char* to_string(Process::Priority);
extern void block(Process::State);
extern void sleep(dword ticks);
extern InlineLinkedList<Process>* g_processes;
template<typename Callback>
inline void Process::for_each(Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
for (auto* process = g_processes->head(); process;) {
auto* next_process = process->next();
if (!callback(*process))
break;
process = next_process;
}
}
template<typename Callback>
inline void Process::for_each_child(Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
pid_t my_pid = pid();
for (auto* process = g_processes->head(); process;) {
auto* next_process = process->next();
if (process->ppid() == my_pid) {
if (!callback(*process))
break;
}
process = next_process;
}
}
template<typename Callback>
inline void Process::for_each_in_pgrp(pid_t pgid, Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
for (auto* process = g_processes->head(); process;) {
auto* next_process = process->next();
if (process->pgid() == pgid) {
if (!callback(*process))
break;
}
process = next_process;
}
}
template<typename Callback>
inline void Process::for_each_in_state(State state, Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
for (auto* process = g_processes->head(); process;) {
auto* next_process = process->next();
if (process->state() == state)
callback(*process);
process = next_process;
}
}
template<typename Callback>
inline void Process::for_each_living(Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
for (auto* process = g_processes->head(); process;) {
auto* next_process = process->next();
if (process->state() != Process::Dead && process->state() != Process::Dying)
callback(*process);
process = next_process;
}
}
inline bool InodeMetadata::may_read(Process& process) const
{
return may_read(process.euid(), process.gids());
}
inline bool InodeMetadata::may_write(Process& process) const
{
return may_write(process.euid(), process.gids());
}
inline bool InodeMetadata::may_execute(Process& process) const
{
return may_execute(process.euid(), process.gids());
}