ladybird/Kernel/Net/NE2000NetworkAdapter.cpp

477 lines
18 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2021, the SerenityOS developers.
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#include <AK/MACAddress.h>
Kernel/PCI: Simplify the entire subsystem A couple of things were changed: 1. Semantic changes - PCI segments are now called PCI domains, to better match what they are really. It's also the name that Linux gave, and it seems that Wikipedia also uses this name. We also remove PCI::ChangeableAddress, because it was used in the past but now it's no longer being used. 2. There are no WindowedMMIOAccess or MMIOAccess classes anymore, as they made a bunch of unnecessary complexity. Instead, Windowed access is removed entirely (this was tested, but never was benchmarked), so we are left with IO access and memory access options. The memory access option is essentially mapping the PCI bus (from the chosen PCI domain), to virtual memory as-is. This means that unless needed, at any time, there is only one PCI bus being mapped, and this is changed if access to another PCI bus in the same PCI domain is needed. For now, we don't support mapping of different PCI buses from different PCI domains at the same time, because basically it's still a non-issue for most machines out there. 2. OOM-safety is increased, especially when constructing the Access object. It means that we pre-allocating any needed resources, and we try to find PCI domains (if requested to initialize memory access) after we attempt to construct the Access object, so it's possible to fail at this point "gracefully". 3. All PCI API functions are now separated into a different header file, which means only "clients" of the PCI subsystem API will need to include that header file. 4. Functional changes - we only allow now to enumerate the bus after a hardware scan. This means that the old method "enumerate_hardware" is removed, so, when initializing an Access object, the initializing function must call rescan on it to force it to find devices. This makes it possible to fail rescan, and also to defer it after construction from both OOM-safety terms and hotplug capabilities.
2021-09-07 12:08:38 +03:00
#include <Kernel/Bus/PCI/API.h>
#include <Kernel/Debug.h>
#include <Kernel/IO.h>
#include <Kernel/Net/NE2000NetworkAdapter.h>
#include <Kernel/Sections.h>
namespace Kernel {
/**
* The NE2000 is an ancient 10 Mib/s Ethernet network card standard by Novell
* from the late 80s. Based on National Semiconductor's DP8390 Ethernet chip
* or compatible, they were known to be extremely bare-bones but also very
* cheap entry-level cards.
*
* QEMU supports them with the ne2k_{isa,pci} devices, physical incarnations
* were available from different manufacturers for the ISA bus and later on
* the PCI bus, including:
* - Realtek's RTL8029
* - VIA Technologies, Inc.'s VT86C926
*
* Official documentation from National Semiconductor includes:
* - Datasheet "DP8390D/NS32490D NIC Network Interface Controller"
* - Application Note 874 "Writing Drivers for the DP8390 NIC Family of Ethernet Controllers"
*
* This driver supports only the PCI variant.
*
* Remember, friends don't let friends use NE2000 network cards :^)
*/
// Page 0 registers
static constexpr u8 REG_RW_COMMAND = 0x00;
static constexpr u8 BIT_COMMAND_STOP = (0b1 << 0);
static constexpr u8 BIT_COMMAND_START = (0b1 << 1);
static constexpr u8 BIT_COMMAND_TXP = (0b1 << 2);
static constexpr u8 BIT_COMMAND_DMA_READ = (0b001 << 3);
static constexpr u8 BIT_COMMAND_DMA_WRITE = (0b010 << 3);
static constexpr u8 BIT_COMMAND_DMA_SEND = (0b011 << 3);
static constexpr u8 BIT_COMMAND_DMA_ABORT = (0b100 << 3);
static constexpr u8 BIT_COMMAND_DMA_FIELD = (0b111 << 3);
static constexpr u8 BIT_COMMAND_PAGE1 = (0b01 << 6);
static constexpr u8 BIT_COMMAND_PAGE2 = (0b10 << 6);
static constexpr u8 BIT_COMMAND_PAGE_FIELD = (0b11 << 6);
static constexpr u8 REG_WR_PAGESTART = 0x01;
static constexpr u8 REG_WR_PAGESTOP = 0x02;
static constexpr u8 REG_RW_BOUNDARY = 0x03;
static constexpr u8 REG_RD_TRANSMITSTATUS = 0x04;
static constexpr u8 REG_WR_TRANSMITPAGE = 0x04;
static constexpr u8 REG_RD_NCR = 0x05;
static constexpr u8 REG_WR_TRANSMITBYTECOUNT0 = 0x05;
static constexpr u8 REG_WR_TRANSMITBYTECOUNT1 = 0x06;
static constexpr u8 REG_RW_INTERRUPTSTATUS = 0x07;
static constexpr u8 REG_RD_CRDMA0 = 0x08;
static constexpr u8 REG_WR_REMOTESTARTADDRESS0 = 0x08;
static constexpr u8 REG_RD_CRDMA1 = 0x09;
static constexpr u8 REG_WR_REMOTESTARTADDRESS1 = 0x09;
static constexpr u8 REG_WR_REMOTEBYTECOUNT0 = 0x0a;
static constexpr u8 REG_WR_REMOTEBYTECOUNT1 = 0x0b;
static constexpr u8 REG_RD_RECEIVESTATUS = 0x0c;
static constexpr u8 BIT_RECEIVESTATUS_PRX = (0b1 << 0);
static constexpr u8 BIT_RECEIVESTATUS_CRC = (0b1 << 1);
static constexpr u8 BIT_RECEIVESTATUS_FAE = (0b1 << 2);
static constexpr u8 BIT_RECEIVESTATUS_FO = (0b1 << 3);
static constexpr u8 BIT_RECEIVESTATUS_MPA = (0b1 << 4);
static constexpr u8 REG_WR_RECEIVECONFIGURATION = 0x0c;
static constexpr u8 BIT_RECEIVECONFIGURATION_SEP = (0b1 << 0);
static constexpr u8 BIT_RECEIVECONFIGURATION_AR = (0b1 << 1);
static constexpr u8 BIT_RECEIVECONFIGURATION_AB = (0b1 << 2);
static constexpr u8 BIT_RECEIVECONFIGURATION_AM = (0b1 << 3);
static constexpr u8 BIT_RECEIVECONFIGURATION_PRO = (0b1 << 4);
static constexpr u8 BIT_RECEIVECONFIGURATION_MON = (0b1 << 5);
static constexpr u8 REG_RD_FAE_TALLY = 0x0d;
static constexpr u8 REG_WR_TRANSMITCONFIGURATION = 0x0d;
static constexpr u8 BIT_WR_TRANSMITCONFIGURATION_LOOPBACK = (0b10 << 0);
static constexpr u8 REG_RD_CRC_TALLY = 0x0e;
static constexpr u8 REG_WR_DATACONFIGURATION = 0x0e;
static constexpr u8 BIT_DATACONFIGURATION_WTS = (0b1 << 0);
static constexpr u8 BIT_DATACONFIGURATION_BOS = (0b1 << 1);
static constexpr u8 BIT_DATACONFIGURATION_LS = (0b1 << 2);
static constexpr u8 BIT_DATACONFIGURATION_FIFO_8B = (0b10 << 5);
static constexpr u8 REG_RD_MISS_PKT_TALLY = 0x0f;
static constexpr u8 REG_WR_INTERRUPTMASK = 0x0f;
static constexpr u8 BIT_INTERRUPTMASK_PRX = (0b1 << 0);
static constexpr u8 BIT_INTERRUPTMASK_PTX = (0b1 << 1);
static constexpr u8 BIT_INTERRUPTMASK_RXE = (0b1 << 2);
static constexpr u8 BIT_INTERRUPTMASK_TXE = (0b1 << 3);
static constexpr u8 BIT_INTERRUPTMASK_OVW = (0b1 << 4);
static constexpr u8 BIT_INTERRUPTMASK_CNT = (0b1 << 5);
static constexpr u8 BIT_INTERRUPTMASK_RDC = (0b1 << 6);
static constexpr u8 BIT_INTERRUPTMASK_RST = (0b1 << 7);
static constexpr u8 REG_RW_IOPORT = 0x10;
// Page 1 registers
static constexpr u8 REG_RW_PHYSICALADDRESS0 = 0x01;
static constexpr u8 REG_RW_CURRENT = 0x07;
static constexpr int NE2K_PAGE_SIZE = 256;
static constexpr int NE2K_RAM_BEGIN = 16384;
static constexpr int NE2K_RAM_END = 32768;
static constexpr int NE2K_RAM_SIZE = NE2K_RAM_END - NE2K_RAM_BEGIN;
static constexpr int NE2K_RAM_SEND_BEGIN = 16384;
static constexpr int NE2K_RAM_SEND_END = 16384 + 6 * NE2K_PAGE_SIZE;
static constexpr int NE2K_RAM_SEND_SIZE = NE2K_RAM_SEND_END - NE2K_RAM_SEND_BEGIN;
static constexpr int NE2K_RAM_RECV_BEGIN = NE2K_RAM_SEND_END;
static constexpr int NE2K_RAM_RECV_END = NE2K_RAM_END;
static constexpr int NE2K_RAM_RECV_SIZE = NE2K_RAM_RECV_END - NE2K_RAM_RECV_BEGIN;
static_assert(NE2K_RAM_BEGIN % NE2K_PAGE_SIZE == 0);
static_assert(NE2K_RAM_END % NE2K_PAGE_SIZE == 0);
static_assert(NE2K_RAM_SEND_BEGIN % NE2K_PAGE_SIZE == 0);
static_assert(NE2K_RAM_SEND_END % NE2K_PAGE_SIZE == 0);
static_assert(NE2K_RAM_RECV_BEGIN % NE2K_PAGE_SIZE == 0);
static_assert(NE2K_RAM_RECV_END % NE2K_PAGE_SIZE == 0);
struct [[gnu::packed]] received_packet_header {
u8 status;
u8 next_packet_page;
u16 length;
};
UNMAP_AFTER_INIT RefPtr<NE2000NetworkAdapter> NE2000NetworkAdapter::try_to_initialize(PCI::Address address)
{
constexpr auto ne2k_ids = Array {
PCI::ID { 0x10EC, 0x8029 }, // RealTek RTL-8029(AS)
// List of clones, taken from Linux's ne2k-pci.c
PCI::ID { 0x1050, 0x0940 }, // Winbond 89C940
PCI::ID { 0x11f6, 0x1401 }, // Compex RL2000
PCI::ID { 0x8e2e, 0x3000 }, // KTI ET32P2
PCI::ID { 0x4a14, 0x5000 }, // NetVin NV5000SC
PCI::ID { 0x1106, 0x0926 }, // Via 86C926
PCI::ID { 0x10bd, 0x0e34 }, // SureCom NE34
PCI::ID { 0x1050, 0x5a5a }, // Winbond W89C940F
PCI::ID { 0x12c3, 0x0058 }, // Holtek HT80232
PCI::ID { 0x12c3, 0x5598 }, // Holtek HT80229
PCI::ID { 0x8c4a, 0x1980 }, // Winbond W89C940 (misprogrammed)
};
auto id = PCI::get_id(address);
if (!ne2k_ids.span().contains_slow(id))
return {};
u8 irq = PCI::get_interrupt_line(address);
return adopt_ref_if_nonnull(new (nothrow) NE2000NetworkAdapter(address, irq));
}
UNMAP_AFTER_INIT NE2000NetworkAdapter::NE2000NetworkAdapter(PCI::Address address, u8 irq)
: PCI::Device(address)
Kernel/PCI: Delete PCI::Device in its current form I created this class a long time ago just to be able to quickly make a PCI device to also represent an interrupt handler (because PCI devices have this capability for most devices). Then after a while I introduced the PCI::DeviceController, which is really almost the same thing (a PCI device class that has Address member in it), but is not tied to interrupts so it can have no interrupts, or spawn interrupt handlers however it wants to seems fit. However I decided it's time to say goodbye for this class for a couple of reasons: 1. It made a whole bunch of weird patterns where you had a PCI::Device and a PCI::DeviceController being used in the topic of implementation, where originally, they meant to be used mutually exclusively (you can't and really don't want to use both). 2. We can really make all the classes that inherit from PCI::Device to inherit from IRQHandler at this point. Later on, when we have MSI interrupts support, we can go further and untie things even more. 3. It makes it possible to simplify the VirtIO implementation to a great extent. While this commit almost doesn't change it, future changes can untangle some complexity in the VirtIO code. For UHCIController, E1000NetworkAdapter, NE2000NetworkAdapter, RTL8139NetworkAdapter, RTL8168NetworkAdapter, E1000ENetworkAdapter we are simply making them to inherit the IRQHandler. This makes some sense, because the first 3 devices will never support anything besides IRQs. For the last 2, they might have MSI support, so when we start to utilize those, we might need to untie these classes from IRQHandler and spawn IRQHandler(s) or MSIHandler(s) as needed. The VirtIODevice class is also a case where we currently need to use both PCI::DeviceController and IRQHandler classes as parents, but it could also be untied from the latter.
2021-08-21 06:55:25 +03:00
, IRQHandler(irq)
, m_io_base(PCI::get_BAR0(pci_address()) & ~3)
{
set_interface_name(address);
dmesgln("NE2000: Found @ {}", pci_address());
m_interrupt_line = PCI::get_interrupt_line(pci_address());
dmesgln("NE2000: Port base: {}", m_io_base);
dmesgln("NE2000: Interrupt line: {}", m_interrupt_line);
int ram_errors = ram_test();
dmesgln("NE2000: RAM test {}, got {} byte errors", (ram_errors == 0 ? "OK" : "KO"), ram_errors);
reset();
set_mac_address(m_mac_address);
dmesgln("NE2000: MAC address: {}", m_mac_address.to_string().characters());
enable_irq();
}
UNMAP_AFTER_INIT NE2000NetworkAdapter::~NE2000NetworkAdapter()
{
}
bool NE2000NetworkAdapter::handle_irq(const RegisterState&)
{
u8 status = in8(REG_RW_INTERRUPTSTATUS);
m_entropy_source.add_random_event(status);
dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: Got interrupt, status={:#02x}", status);
if (status == 0) {
return false;
}
if (status & BIT_INTERRUPTMASK_PRX) {
dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: Interrupt for packet received");
}
if (status & BIT_INTERRUPTMASK_PTX) {
dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: Interrupt for packet sent");
}
if (status & BIT_INTERRUPTMASK_RXE) {
u8 fae = in8(REG_RD_FAE_TALLY);
u8 crc = in8(REG_RD_CRC_TALLY);
u8 miss = in8(REG_RD_MISS_PKT_TALLY);
dmesgln("NE2000NetworkAdapter: Packet reception error framing={} crc={} missed={}", fae, crc, miss);
// TODO: handle counters
}
if (status & BIT_INTERRUPTMASK_TXE) {
dmesgln("NE2000NetworkAdapter: Packet transmission error");
}
if (status & BIT_INTERRUPTMASK_OVW) {
dmesgln("NE2000NetworkAdapter: Ring buffer reception overflow error");
// TODO: handle counters
}
if (status & BIT_INTERRUPTMASK_CNT) {
dmesgln("NE2000NetworkAdapter: Counter overflow error");
// TODO: handle counters
}
if (status & BIT_INTERRUPTMASK_RST) {
dmesgln("NE2000NetworkAdapter: NIC requires reset due to packet reception overflow");
// TODO: proper reset procedure
reset();
}
receive();
m_wait_queue.wake_all();
out8(REG_RW_INTERRUPTSTATUS, status);
return true;
}
UNMAP_AFTER_INIT int NE2000NetworkAdapter::ram_test()
{
IOAddress io(PCI::get_BAR0(pci_address()) & ~3);
int errors = 0;
out8(REG_RW_COMMAND, BIT_COMMAND_DMA_ABORT | BIT_COMMAND_STOP);
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
out8(REG_WR_DATACONFIGURATION, BIT_DATACONFIGURATION_FIFO_8B | BIT_DATACONFIGURATION_WTS);
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
out8(REG_WR_DATACONFIGURATION, BIT_DATACONFIGURATION_FIFO_8B | BIT_DATACONFIGURATION_BOS | BIT_DATACONFIGURATION_WTS);
#else
# error Unknown byte order
#endif
out8(REG_WR_REMOTEBYTECOUNT0, 0x00);
out8(REG_WR_REMOTEBYTECOUNT1, 0x00);
out8(REG_WR_RECEIVECONFIGURATION, BIT_RECEIVECONFIGURATION_MON);
out8(REG_RW_COMMAND, BIT_COMMAND_DMA_ABORT | BIT_COMMAND_START);
Array<u8, NE2K_RAM_SIZE> buffer;
const u8 patterns[3] = { 0x5a, 0xff, 0x00 };
for (int i = 0; i < 3; ++i) {
for (size_t j = 0; j < buffer.size(); ++j)
buffer[j] = patterns[i];
rdma_write(NE2K_RAM_BEGIN, buffer);
rdma_read(NE2K_RAM_BEGIN, buffer);
for (size_t j = 0; j < buffer.size(); ++j) {
if (buffer[j] != patterns[i]) {
if (errors < 16)
dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: Bad adapter RAM @ {} expected={} got={}", PhysicalAddress(NE2K_RAM_BEGIN + j), patterns[i], buffer[j]);
else if (errors == 16)
dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: Too many RAM errors, silencing further output");
errors++;
}
}
}
return errors;
}
void NE2000NetworkAdapter::reset()
{
const u8 interrupt_mask = BIT_INTERRUPTMASK_PRX | BIT_INTERRUPTMASK_PTX | BIT_INTERRUPTMASK_RXE | BIT_INTERRUPTMASK_TXE | BIT_INTERRUPTMASK_OVW | BIT_INTERRUPTMASK_CNT;
u8 prom[32];
// Taken from DP8390D's datasheet section 11.0, "Initialization Procedures"
out8(REG_RW_COMMAND, BIT_COMMAND_DMA_ABORT | BIT_COMMAND_STOP);
#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
out8(REG_WR_DATACONFIGURATION, BIT_DATACONFIGURATION_FIFO_8B | BIT_DATACONFIGURATION_WTS);
#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
out8(REG_WR_DATACONFIGURATION, BIT_DATACONFIGURATION_FIFO_8B | BIT_DATACONFIGURATION_BOS | BIT_DATACONFIGURATION_WTS);
#else
# error Unknown byte order
#endif
out8(REG_WR_REMOTEBYTECOUNT0, 0x00);
out8(REG_WR_REMOTEBYTECOUNT1, 0x00);
out8(REG_WR_RECEIVECONFIGURATION, BIT_RECEIVECONFIGURATION_AB | BIT_RECEIVECONFIGURATION_AR);
out8(REG_WR_TRANSMITCONFIGURATION, BIT_WR_TRANSMITCONFIGURATION_LOOPBACK);
m_ring_read_ptr = NE2K_RAM_RECV_BEGIN >> 8;
out8(REG_WR_PAGESTART, NE2K_RAM_RECV_BEGIN >> 8);
out8(REG_RW_BOUNDARY, NE2K_RAM_RECV_BEGIN >> 8);
out8(REG_WR_PAGESTOP, NE2K_RAM_RECV_END >> 8);
out8(REG_RW_INTERRUPTSTATUS, 0xff);
out8(REG_WR_INTERRUPTMASK, interrupt_mask);
rdma_read(0, Bytes(prom, sizeof(prom)));
for (int i = 0; i < 6; i++) {
m_mac_address[i] = prom[i * 2];
}
out8(REG_RW_COMMAND, BIT_COMMAND_PAGE1 | BIT_COMMAND_DMA_ABORT | BIT_COMMAND_STOP);
for (int i = 0; i < 6; i++) {
out8(REG_RW_PHYSICALADDRESS0 + i, m_mac_address[i]);
}
out8(REG_RW_CURRENT, NE2K_RAM_RECV_BEGIN >> 8);
out8(REG_RW_COMMAND, BIT_COMMAND_DMA_ABORT | BIT_COMMAND_START);
out8(REG_WR_TRANSMITCONFIGURATION, 0xe0);
}
void NE2000NetworkAdapter::rdma_read(size_t address, Bytes payload)
{
dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: DMA read @ {} length={}", PhysicalAddress(address), payload.size());
u8 command = in8(REG_RW_COMMAND) & ~(BIT_COMMAND_PAGE_FIELD | BIT_COMMAND_DMA_FIELD);
out8(REG_RW_COMMAND, command | BIT_COMMAND_DMA_ABORT);
out8(REG_RW_INTERRUPTSTATUS, BIT_INTERRUPTMASK_RDC);
out8(REG_WR_REMOTEBYTECOUNT0, payload.size());
out8(REG_WR_REMOTEBYTECOUNT1, payload.size() >> 8);
out8(REG_WR_REMOTESTARTADDRESS0, address);
out8(REG_WR_REMOTESTARTADDRESS1, address >> 8);
command = in8(REG_RW_COMMAND) & ~(BIT_COMMAND_DMA_FIELD);
out8(REG_RW_COMMAND, command | BIT_COMMAND_DMA_READ);
for (size_t i = 0; i < payload.size(); i += 2) {
u16 data = in16(REG_RW_IOPORT);
payload[i] = data;
if (i != payload.size() - 1)
payload[i + 1] = data >> 8;
}
while (!(in8(REG_RW_INTERRUPTSTATUS) & BIT_INTERRUPTMASK_RDC))
;
}
void NE2000NetworkAdapter::rdma_write(size_t address, ReadonlyBytes payload)
{
dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: DMA write @ {} length={}", PhysicalAddress(address), payload.size());
u8 command = in8(REG_RW_COMMAND) & ~(BIT_COMMAND_PAGE_FIELD | BIT_COMMAND_DMA_FIELD);
out8(REG_RW_COMMAND, command | BIT_COMMAND_DMA_ABORT);
out8(REG_RW_INTERRUPTSTATUS, BIT_INTERRUPTMASK_RDC);
out8(REG_WR_REMOTEBYTECOUNT0, payload.size());
out8(REG_WR_REMOTEBYTECOUNT1, payload.size() >> 8);
out8(REG_WR_REMOTESTARTADDRESS0, address);
out8(REG_WR_REMOTESTARTADDRESS1, address >> 8);
command = in8(REG_RW_COMMAND) & ~(BIT_COMMAND_DMA_FIELD);
out8(REG_RW_COMMAND, command | BIT_COMMAND_DMA_WRITE);
for (size_t i = 0; i < payload.size(); i += 2) {
u16 data = payload[i];
if (i != payload.size() - 1)
data |= payload[i + 1] << 8;
out16(REG_RW_IOPORT, data);
}
while (!(in8(REG_RW_INTERRUPTSTATUS) & BIT_INTERRUPTMASK_RDC))
;
}
void NE2000NetworkAdapter::send_raw(ReadonlyBytes payload)
{
dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: Sending packet length={}", payload.size());
if (payload.size() > NE2K_RAM_SEND_SIZE) {
dmesgln("NE2000NetworkAdapter: Packet to send was too big; discarding");
return;
}
while (in8(REG_RW_COMMAND) & BIT_COMMAND_TXP)
m_wait_queue.wait_forever("NE2000NetworkAdapter");
disable_irq();
size_t packet_size = payload.size();
if (packet_size < 64)
packet_size = 64;
rdma_write(NE2K_RAM_SEND_BEGIN, payload);
out8(REG_WR_TRANSMITPAGE, NE2K_RAM_SEND_BEGIN >> 8);
out8(REG_WR_TRANSMITBYTECOUNT0, packet_size);
out8(REG_WR_TRANSMITBYTECOUNT1, packet_size >> 8);
out8(REG_RW_COMMAND, BIT_COMMAND_DMA_ABORT | BIT_COMMAND_TXP | BIT_COMMAND_START);
dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: Packet submitted for transmission");
enable_irq();
}
void NE2000NetworkAdapter::receive()
{
while (true) {
out8(REG_RW_COMMAND, BIT_COMMAND_PAGE1 | in8(REG_RW_COMMAND));
u8 current = in8(REG_RW_CURRENT);
out8(REG_RW_COMMAND, in8(REG_RW_COMMAND) & ~BIT_COMMAND_PAGE_FIELD);
if (m_ring_read_ptr == current)
break;
size_t header_address = m_ring_read_ptr << 8;
received_packet_header header;
rdma_read(header_address, Bytes(reinterpret_cast<u8*>(&header), sizeof(header)));
bool packet_ok = header.status & BIT_RECEIVESTATUS_PRX;
dbgln_if(NE2000_DEBUG, "NE2000NetworkAdapter: Packet received {} length={}", (packet_ok ? "intact" : "damaged"), header.length);
if (packet_ok) {
size_t bytes_in_packet = sizeof(received_packet_header) + header.length;
auto packet_result = NetworkByteBuffer::create_uninitialized(bytes_in_packet);
u8 drop_buffer[NE2K_PAGE_SIZE];
Bytes buffer { drop_buffer, array_size(drop_buffer) };
bool will_drop { false };
if (!packet_result.has_value()) {
dbgln("NE2000NetworkAdapter: Not enough memory for packet with length = {}, dropping.", header.length);
will_drop = true;
} else {
buffer = packet_result->bytes();
}
int current_offset = 0;
int ring_offset = header_address;
while (bytes_in_packet > 0) {
int copy_size = min(bytes_in_packet, NE2K_PAGE_SIZE);
rdma_read(ring_offset, buffer.slice(current_offset, copy_size));
if (!will_drop)
current_offset += copy_size;
ring_offset += copy_size;
bytes_in_packet -= copy_size;
if (ring_offset == NE2K_RAM_RECV_END)
ring_offset = NE2K_RAM_RECV_BEGIN;
}
if (!will_drop)
did_receive(buffer.slice(sizeof(received_packet_header)));
}
if (header.next_packet_page == (NE2K_RAM_RECV_BEGIN >> 8))
out8(REG_RW_BOUNDARY, (NE2K_RAM_RECV_END >> 8) - 1);
else
out8(REG_RW_BOUNDARY, header.next_packet_page - 1);
m_ring_read_ptr = header.next_packet_page;
}
}
void NE2000NetworkAdapter::out8(u16 address, u8 data)
{
m_io_base.offset(address).out(data);
}
void NE2000NetworkAdapter::out16(u16 address, u16 data)
{
m_io_base.offset(address).out(data);
}
u8 NE2000NetworkAdapter::in8(u16 address)
{
u8 data = m_io_base.offset(address).in<u8>();
return data;
}
u16 NE2000NetworkAdapter::in16(u16 address)
{
return m_io_base.offset(address).in<u16>();
}
}