ladybird/Kernel/Scheduler.cpp

681 lines
21 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <AK/QuickSort.h>
#include <AK/TemporaryChange.h>
#include <Kernel/Devices/PIT.h>
#include <Kernel/FileSystem/FileDescription.h>
#include <Kernel/Net/Socket.h>
#include <Kernel/Process.h>
#include <Kernel/Profiling.h>
#include <Kernel/RTC.h>
#include <Kernel/Scheduler.h>
#include <Kernel/TimerQueue.h>
//#define LOG_EVERY_CONTEXT_SWITCH
//#define SCHEDULER_DEBUG
//#define SCHEDULER_RUNNABLE_DEBUG
namespace Kernel {
SchedulerData* g_scheduler_data;
void Scheduler::init_thread(Thread& thread)
{
g_scheduler_data->m_nonrunnable_threads.append(thread);
}
void Scheduler::update_state_for_thread(Thread& thread)
{
ASSERT_INTERRUPTS_DISABLED();
auto& list = g_scheduler_data->thread_list_for_state(thread.state());
if (list.contains(thread))
return;
list.append(thread);
}
static u32 time_slice_for(const Thread& thread)
{
// One time slice unit == 1ms
if (&thread == g_colonel)
return 1;
return 10;
}
Thread* g_finalizer;
Thread* g_colonel;
WaitQueue* g_finalizer_wait_queue;
bool g_finalizer_has_work;
static Process* s_colonel_process;
u64 g_uptime;
struct TaskRedirectionData {
u16 selector;
TSS32 tss;
};
static TaskRedirectionData s_redirection;
static bool s_active;
bool Scheduler::is_active()
{
return s_active;
}
Thread::JoinBlocker::JoinBlocker(Thread& joinee, void*& joinee_exit_value)
: m_joinee(joinee)
, m_joinee_exit_value(joinee_exit_value)
{
ASSERT(m_joinee.m_joiner == nullptr);
m_joinee.m_joiner = Thread::current;
Thread::current->m_joinee = &joinee;
}
bool Thread::JoinBlocker::should_unblock(Thread& joiner, time_t, long)
{
return !joiner.m_joinee;
}
Thread::FileDescriptionBlocker::FileDescriptionBlocker(const FileDescription& description)
: m_blocked_description(description)
{
}
const FileDescription& Thread::FileDescriptionBlocker::blocked_description() const
{
return m_blocked_description;
}
Thread::AcceptBlocker::AcceptBlocker(const FileDescription& description)
: FileDescriptionBlocker(description)
{
}
bool Thread::AcceptBlocker::should_unblock(Thread&, time_t, long)
{
auto& socket = *blocked_description().socket();
return socket.can_accept();
}
Thread::ConnectBlocker::ConnectBlocker(const FileDescription& description)
: FileDescriptionBlocker(description)
{
}
bool Thread::ConnectBlocker::should_unblock(Thread&, time_t, long)
{
auto& socket = *blocked_description().socket();
return socket.setup_state() == Socket::SetupState::Completed;
}
Thread::WriteBlocker::WriteBlocker(const FileDescription& description)
: FileDescriptionBlocker(description)
{
if (description.is_socket()) {
auto& socket = *description.socket();
if (socket.has_send_timeout()) {
timeval deadline = kgettimeofday();
deadline.tv_sec += socket.send_timeout().tv_sec;
deadline.tv_usec += socket.send_timeout().tv_usec;
deadline.tv_sec += (socket.send_timeout().tv_usec / 1000000) * 1;
deadline.tv_usec %= 1000000;
m_deadline = deadline;
}
}
}
bool Thread::WriteBlocker::should_unblock(Thread&, time_t now_sec, long now_usec)
{
if (m_deadline.has_value()) {
bool timed_out = now_sec > m_deadline.value().tv_sec || (now_sec == m_deadline.value().tv_sec && now_usec >= m_deadline.value().tv_usec);
return timed_out || blocked_description().can_write();
}
return blocked_description().can_write();
}
Thread::ReadBlocker::ReadBlocker(const FileDescription& description)
: FileDescriptionBlocker(description)
{
if (description.is_socket()) {
auto& socket = *description.socket();
if (socket.has_receive_timeout()) {
timeval deadline = kgettimeofday();
deadline.tv_sec += socket.receive_timeout().tv_sec;
deadline.tv_usec += socket.receive_timeout().tv_usec;
deadline.tv_sec += (socket.receive_timeout().tv_usec / 1000000) * 1;
deadline.tv_usec %= 1000000;
m_deadline = deadline;
}
}
}
bool Thread::ReadBlocker::should_unblock(Thread&, time_t now_sec, long now_usec)
{
if (m_deadline.has_value()) {
bool timed_out = now_sec > m_deadline.value().tv_sec || (now_sec == m_deadline.value().tv_sec && now_usec >= m_deadline.value().tv_usec);
return timed_out || blocked_description().can_read();
}
return blocked_description().can_read();
}
Thread::ConditionBlocker::ConditionBlocker(const char* state_string, Function<bool()>&& condition)
: m_block_until_condition(move(condition))
, m_state_string(state_string)
{
ASSERT(m_block_until_condition);
}
bool Thread::ConditionBlocker::should_unblock(Thread&, time_t, long)
{
return m_block_until_condition();
}
Thread::SleepBlocker::SleepBlocker(u64 wakeup_time)
2019-07-18 17:26:11 +02:00
: m_wakeup_time(wakeup_time)
{
}
bool Thread::SleepBlocker::should_unblock(Thread&, time_t, long)
2019-07-18 17:26:11 +02:00
{
return m_wakeup_time <= g_uptime;
}
Thread::SelectBlocker::SelectBlocker(const timeval& tv, bool select_has_timeout, const FDVector& read_fds, const FDVector& write_fds, const FDVector& except_fds)
2019-07-18 17:39:49 +02:00
: m_select_timeout(tv)
, m_select_has_timeout(select_has_timeout)
, m_select_read_fds(read_fds)
, m_select_write_fds(write_fds)
, m_select_exceptional_fds(except_fds)
{
}
bool Thread::SelectBlocker::should_unblock(Thread& thread, time_t now_sec, long now_usec)
2019-07-18 17:39:49 +02:00
{
if (m_select_has_timeout) {
if (now_sec > m_select_timeout.tv_sec || (now_sec == m_select_timeout.tv_sec && now_usec >= m_select_timeout.tv_usec))
return true;
}
auto& process = thread.process();
for (int fd : m_select_read_fds) {
if (!process.m_fds[fd])
continue;
2019-07-18 17:39:49 +02:00
if (process.m_fds[fd].description->can_read())
return true;
}
for (int fd : m_select_write_fds) {
if (!process.m_fds[fd])
continue;
2019-07-18 17:39:49 +02:00
if (process.m_fds[fd].description->can_write())
return true;
}
return false;
}
Thread::WaitBlocker::WaitBlocker(int wait_options, pid_t& waitee_pid)
2019-07-18 18:05:19 +02:00
: m_wait_options(wait_options)
, m_waitee_pid(waitee_pid)
{
}
bool Thread::WaitBlocker::should_unblock(Thread& thread, time_t, long)
2019-07-18 18:05:19 +02:00
{
bool should_unblock = false;
if (m_waitee_pid != -1) {
auto* peer = Process::from_pid(m_waitee_pid);
if (!peer)
return true;
}
2019-07-18 18:05:19 +02:00
thread.process().for_each_child([&](Process& child) {
if (m_waitee_pid != -1 && m_waitee_pid != child.pid())
return IterationDecision::Continue;
bool child_exited = child.is_dead();
bool child_stopped = child.thread_count() && child.any_thread().state() == Thread::State::Stopped;
2019-07-18 18:05:19 +02:00
bool wait_finished = ((m_wait_options & WEXITED) && child_exited)
|| ((m_wait_options & WSTOPPED) && child_stopped);
if (!wait_finished)
return IterationDecision::Continue;
m_waitee_pid = child.pid();
should_unblock = true;
return IterationDecision::Break;
});
return should_unblock;
}
Thread::SemiPermanentBlocker::SemiPermanentBlocker(Reason reason)
: m_reason(reason)
{
}
bool Thread::SemiPermanentBlocker::should_unblock(Thread&, time_t, long)
{
// someone else has to unblock us
return false;
}
// Called by the scheduler on threads that are blocked for some reason.
// Make a decision as to whether to unblock them or not.
void Thread::consider_unblock(time_t now_sec, long now_usec)
{
switch (state()) {
case Thread::Invalid:
case Thread::Runnable:
case Thread::Running:
case Thread::Dead:
case Thread::Stopped:
case Thread::Queued:
case Thread::Dying:
/* don't know, don't care */
return;
case Thread::Blocked:
ASSERT(m_blocker != nullptr);
if (m_blocker->should_unblock(*this, now_sec, now_usec))
unblock();
return;
case Thread::Skip1SchedulerPass:
set_state(Thread::Skip0SchedulerPasses);
return;
case Thread::Skip0SchedulerPasses:
set_state(Thread::Runnable);
return;
}
}
bool Scheduler::pick_next()
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(!s_active);
TemporaryChange<bool> change(s_active, true);
ASSERT(s_active);
if (!Thread::current) {
// XXX: The first ever context_switch() goes to the idle process.
// This to setup a reliable place we can return to.
return context_switch(*g_colonel);
}
struct timeval now;
kgettimeofday(now);
auto now_sec = now.tv_sec;
auto now_usec = now.tv_usec;
// Check and unblock threads whose wait conditions have been met.
Scheduler::for_each_nonrunnable([&](Thread& thread) {
thread.consider_unblock(now_sec, now_usec);
return IterationDecision::Continue;
});
Process::for_each([&](Process& process) {
if (process.is_dead()) {
if (Process::current->pid() != process.pid() && (!process.ppid() || !Process::from_pid(process.ppid()))) {
auto name = process.name();
auto pid = process.pid();
auto exit_status = Process::reap(process);
dbgprintf("reaped unparented process %s(%u), exit status: %u\n", name.characters(), pid, exit_status);
}
2019-06-07 11:30:07 +02:00
return IterationDecision::Continue;
}
if (process.m_alarm_deadline && g_uptime > process.m_alarm_deadline) {
process.m_alarm_deadline = 0;
process.send_signal(SIGALRM, nullptr);
}
2019-06-07 11:30:07 +02:00
return IterationDecision::Continue;
});
// Dispatch any pending signals.
Thread::for_each_living([](Thread& thread) -> IterationDecision {
if (!thread.has_unmasked_pending_signals())
return IterationDecision::Continue;
// FIXME: It would be nice if the Scheduler didn't have to worry about who is "current"
// For now, avoid dispatching signals to "current" and do it in a scheduling pass
// while some other process is interrupted. Otherwise a mess will be made.
if (&thread == Thread::current)
return IterationDecision::Continue;
// We know how to interrupt blocked processes, but if they are just executing
// at some random point in the kernel, let them continue.
// Before returning to userspace from a syscall, we will block a thread if it has any
// pending unmasked signals, allowing it to be dispatched then.
if (thread.in_kernel() && !thread.is_blocked() && !thread.is_stopped())
return IterationDecision::Continue;
// NOTE: dispatch_one_pending_signal() may unblock the process.
bool was_blocked = thread.is_blocked();
if (thread.dispatch_one_pending_signal() == ShouldUnblockThread::No)
return IterationDecision::Continue;
if (was_blocked) {
dbgprintf("Unblock %s(%u) due to signal\n", thread.process().name().characters(), thread.pid());
ASSERT(thread.m_blocker != nullptr);
thread.m_blocker->set_interrupted_by_signal();
thread.unblock();
}
return IterationDecision::Continue;
});
#ifdef SCHEDULER_RUNNABLE_DEBUG
dbgprintf("Non-runnables:\n");
Scheduler::for_each_nonrunnable([](Thread& thread) -> IterationDecision {
dbgprintf(" %-12s %s(%u:%u) @ %w:%x\n", thread.state_string(), thread.name().characters(), thread.pid(), thread.tid(), thread.tss().cs, thread.tss().eip);
return IterationDecision::Continue;
});
dbgprintf("Runnables:\n");
Scheduler::for_each_runnable([](Thread& thread) -> IterationDecision {
dbgprintf(" %3u/%2u %-12s %s(%u:%u) @ %w:%x\n", thread.effective_priority(), thread.priority(), thread.state_string(), thread.name().characters(), thread.pid(), thread.tid(), thread.tss().cs, thread.tss().eip);
return IterationDecision::Continue;
});
#endif
Vector<Thread*, 128> sorted_runnables;
for_each_runnable([&sorted_runnables](auto& thread) {
sorted_runnables.append(&thread);
return IterationDecision::Continue;
});
quick_sort(sorted_runnables.begin(), sorted_runnables.end(), [](auto& a, auto& b) { return a->effective_priority() >= b->effective_priority(); });
Thread* thread_to_schedule = nullptr;
for (auto* thread : sorted_runnables) {
if (thread->process().is_being_inspected())
continue;
if (thread->process().exec_tid() && thread->process().exec_tid() != thread->tid())
continue;
ASSERT(thread->state() == Thread::Runnable || thread->state() == Thread::Running);
if (!thread_to_schedule) {
thread->m_extra_priority = 0;
thread_to_schedule = thread;
} else {
thread->m_extra_priority++;
}
}
if (!thread_to_schedule)
thread_to_schedule = g_colonel;
#ifdef SCHEDULER_DEBUG
dbgprintf("switch to %s(%u:%u) @ %w:%x\n",
thread_to_schedule->name().characters(),
thread_to_schedule->pid(),
thread_to_schedule->tid(),
thread_to_schedule->tss().cs,
thread_to_schedule->tss().eip);
#endif
return context_switch(*thread_to_schedule);
}
bool Scheduler::donate_to(Thread* beneficiary, const char* reason)
{
InterruptDisabler disabler;
if (!Thread::is_thread(beneficiary))
return false;
(void)reason;
unsigned ticks_left = Thread::current->ticks_left();
if (!beneficiary || beneficiary->state() != Thread::Runnable || ticks_left <= 1)
return yield();
unsigned ticks_to_donate = min(ticks_left - 1, time_slice_for(*beneficiary));
#ifdef SCHEDULER_DEBUG
dbgprintf("%s(%u:%u) donating %u ticks to %s(%u:%u), reason=%s\n", Process::current->name().characters(), Process::current->pid(), Thread::current->tid(), ticks_to_donate, beneficiary->process().name().characters(), beneficiary->pid(), beneficiary->tid(), reason);
#endif
context_switch(*beneficiary);
beneficiary->set_ticks_left(ticks_to_donate);
switch_now();
return false;
}
bool Scheduler::yield()
{
InterruptDisabler disabler;
ASSERT(Thread::current);
if (!pick_next())
return false;
switch_now();
return true;
}
void Scheduler::pick_next_and_switch_now()
{
bool someone_wants_to_run = pick_next();
ASSERT(someone_wants_to_run);
switch_now();
}
void Scheduler::switch_now()
{
Descriptor& descriptor = get_gdt_entry(Thread::current->selector());
descriptor.type = 9;
asm("sti\n"
"ljmp *(%%eax)\n" ::"a"(&Thread::current->far_ptr()));
}
bool Scheduler::context_switch(Thread& thread)
{
thread.set_ticks_left(time_slice_for(thread));
thread.did_schedule();
if (Thread::current == &thread)
return false;
if (Thread::current) {
// If the last process hasn't blocked (still marked as running),
// mark it as runnable for the next round.
if (Thread::current->state() == Thread::Running)
Thread::current->set_state(Thread::Runnable);
asm volatile("fxsave %0"
: "=m"(Thread::current->fpu_state()));
#ifdef LOG_EVERY_CONTEXT_SWITCH
dbgprintf("Scheduler: %s(%u:%u) -> %s(%u:%u) [%u] %w:%x\n",
Process::current->name().characters(), Process::current->pid(), Thread::current->tid(),
thread.process().name().characters(), thread.process().pid(), thread.tid(),
thread.priority(),
thread.tss().cs, thread.tss().eip);
#endif
}
Thread::current = &thread;
Process::current = &thread.process();
thread.set_state(Thread::Running);
asm volatile("fxrstor %0" ::"m"(Thread::current->fpu_state()));
if (!thread.selector()) {
thread.set_selector(gdt_alloc_entry());
auto& descriptor = get_gdt_entry(thread.selector());
descriptor.set_base(&thread.tss());
descriptor.set_limit(sizeof(TSS32));
descriptor.dpl = 0;
descriptor.segment_present = 1;
descriptor.granularity = 0;
descriptor.zero = 0;
descriptor.operation_size = 1;
descriptor.descriptor_type = 0;
}
if (!thread.thread_specific_data().is_null()) {
auto& descriptor = thread_specific_descriptor();
descriptor.set_base(thread.thread_specific_data().as_ptr());
descriptor.set_limit(sizeof(ThreadSpecificData*));
}
auto& descriptor = get_gdt_entry(thread.selector());
descriptor.type = 11; // Busy TSS
return true;
}
static void initialize_redirection()
{
2018-12-03 00:39:25 +01:00
auto& descriptor = get_gdt_entry(s_redirection.selector);
descriptor.set_base(&s_redirection.tss);
descriptor.set_limit(sizeof(TSS32));
descriptor.dpl = 0;
descriptor.segment_present = 1;
descriptor.granularity = 0;
descriptor.zero = 0;
descriptor.operation_size = 1;
descriptor.descriptor_type = 0;
descriptor.type = 9;
2018-12-03 00:39:25 +01:00
flush_gdt();
}
void Scheduler::prepare_for_iret_to_new_process()
{
2018-12-03 00:39:25 +01:00
auto& descriptor = get_gdt_entry(s_redirection.selector);
descriptor.type = 9;
s_redirection.tss.backlink = Thread::current->selector();
load_task_register(s_redirection.selector);
}
void Scheduler::prepare_to_modify_tss(Thread& thread)
{
// This ensures that a currently running process modifying its own TSS
// in order to yield() and end up somewhere else doesn't just end up
// right after the yield().
if (Thread::current == &thread)
load_task_register(s_redirection.selector);
}
Process* Scheduler::colonel()
{
return s_colonel_process;
}
void Scheduler::initialize()
{
g_scheduler_data = new SchedulerData;
g_finalizer_wait_queue = new WaitQueue;
g_finalizer_has_work = false;
s_redirection.selector = gdt_alloc_entry();
initialize_redirection();
s_colonel_process = Process::create_kernel_process(g_colonel, "colonel", nullptr);
g_colonel->set_priority(THREAD_PRIORITY_MIN);
load_task_register(s_redirection.selector);
}
void Scheduler::timer_tick(RegisterState& regs)
{
if (!Thread::current)
return;
++g_uptime;
timeval tv;
tv.tv_sec = RTC::boot_time() + PIT::the().seconds_since_boot();
tv.tv_usec = PIT::the().ticks_this_second() * 1000;
Process::update_info_page_timestamp(tv);
if (Process::current->is_profiling()) {
SmapDisabler disabler;
auto backtrace = Thread::current->raw_backtrace(regs.ebp);
auto& sample = Profiling::next_sample_slot();
sample.pid = Process::current->pid();
sample.tid = Thread::current->tid();
sample.timestamp = g_uptime;
for (size_t i = 0; i < min((size_t)backtrace.size(), Profiling::max_stack_frame_count); ++i) {
sample.frames[i] = backtrace[i];
}
}
TimerQueue::the().fire();
if (Thread::current->tick())
return;
auto& outgoing_tss = Thread::current->tss();
if (!pick_next())
return;
outgoing_tss.gs = regs.gs;
outgoing_tss.fs = regs.fs;
outgoing_tss.es = regs.es;
outgoing_tss.ds = regs.ds;
outgoing_tss.edi = regs.edi;
outgoing_tss.esi = regs.esi;
outgoing_tss.ebp = regs.ebp;
outgoing_tss.ebx = regs.ebx;
outgoing_tss.edx = regs.edx;
outgoing_tss.ecx = regs.ecx;
outgoing_tss.eax = regs.eax;
outgoing_tss.eip = regs.eip;
outgoing_tss.cs = regs.cs;
outgoing_tss.eflags = regs.eflags;
// Compute process stack pointer.
// Add 16 for CS, EIP, EFLAGS, exception code (interrupt mechanic)
outgoing_tss.esp = regs.esp + 16;
outgoing_tss.ss = regs.ss;
if ((outgoing_tss.cs & 3) != 0) {
outgoing_tss.ss = regs.userspace_ss;
outgoing_tss.esp = regs.userspace_esp;
}
prepare_for_iret_to_new_process();
// Set the NT (nested task) flag.
asm(
"pushf\n"
"orl $0x00004000, (%esp)\n"
"popf\n");
}
static bool s_should_stop_idling = false;
void Scheduler::stop_idling()
{
if (Thread::current != g_colonel)
return;
s_should_stop_idling = true;
}
void Scheduler::idle_loop()
{
for (;;) {
asm("hlt");
if (s_should_stop_idling) {
s_should_stop_idling = false;
yield();
}
}
}
}