2021-04-10 10:59:24 -04:00
/*
2021-04-22 16:40:43 -04:00
* Copyright ( c ) 2021 , Idan Horowitz < idan . horowitz @ serenityos . org >
2021-04-10 10:59:24 -04:00
*
2021-04-22 04:24:48 -04:00
* SPDX - License - Identifier : BSD - 2 - Clause
2021-04-10 10:59:24 -04:00
*/
# pragma once
# include <AK/RedBlackTree.h>
namespace AK {
template < Integral K >
class IntrusiveRedBlackTreeNode ;
template < Integral K , typename V , IntrusiveRedBlackTreeNode < K > V : : * member >
2021-07-17 05:25:28 -04:00
class IntrusiveRedBlackTree final : public BaseRedBlackTree < K > {
2021-04-10 10:59:24 -04:00
public :
IntrusiveRedBlackTree ( ) = default ;
2021-04-23 04:10:23 -04:00
virtual ~ IntrusiveRedBlackTree ( ) override
2021-04-10 10:59:24 -04:00
{
clear ( ) ;
}
using BaseTree = BaseRedBlackTree < K > ;
using TreeNode = IntrusiveRedBlackTreeNode < K > ;
V * find ( K key )
{
auto * node = static_cast < TreeNode * > ( BaseTree : : find ( this - > m_root , key ) ) ;
if ( ! node )
return nullptr ;
return node_to_value ( * node ) ;
}
V * find_largest_not_above ( K key )
{
auto * node = static_cast < TreeNode * > ( BaseTree : : find_largest_not_above ( this - > m_root , key ) ) ;
if ( ! node )
return nullptr ;
return node_to_value ( * node ) ;
}
void insert ( V & value )
{
auto & node = value . * member ;
BaseTree : : insert ( & node ) ;
node . m_in_tree = true ;
}
template < typename ElementType >
class BaseIterator {
public :
BaseIterator ( ) = default ;
bool operator ! = ( const BaseIterator & other ) const { return m_node ! = other . m_node ; }
BaseIterator & operator + + ( )
{
if ( ! m_node )
return * this ;
m_prev = m_node ;
// the complexity is O(logn) for each successor call, but the total complexity for all elements comes out to O(n), meaning the amortized cost for a single call is O(1)
m_node = static_cast < TreeNode * > ( BaseTree : : successor ( m_node ) ) ;
return * this ;
}
BaseIterator & operator - - ( )
{
if ( ! m_prev )
return * this ;
m_node = m_prev ;
m_prev = static_cast < TreeNode * > ( BaseTree : : predecessor ( m_prev ) ) ;
return * this ;
}
ElementType & operator * ( )
{
VERIFY ( m_node ) ;
return * node_to_value ( * m_node ) ;
}
ElementType * operator - > ( )
{
VERIFY ( m_node ) ;
return node_to_value ( * m_node ) ;
}
[ [ nodiscard ] ] bool is_end ( ) const { return ! m_node ; }
[ [ nodiscard ] ] bool is_begin ( ) const { return ! m_prev ; }
private :
friend class IntrusiveRedBlackTree ;
explicit BaseIterator ( TreeNode * node , TreeNode * prev = nullptr )
: m_node ( node )
, m_prev ( prev )
{
}
TreeNode * m_node { nullptr } ;
TreeNode * m_prev { nullptr } ;
} ;
using Iterator = BaseIterator < V > ;
Iterator begin ( ) { return Iterator ( static_cast < TreeNode * > ( this - > m_minimum ) ) ; }
Iterator end ( ) { return { } ; }
Iterator begin_from ( K key ) { return Iterator ( static_cast < TreeNode * > ( BaseTree : : find ( this - > m_root , key ) ) ) ; }
using ConstIterator = BaseIterator < const V > ;
ConstIterator begin ( ) const { return ConstIterator ( static_cast < TreeNode * > ( this - > m_minimum ) ) ; }
ConstIterator end ( ) const { return { } ; }
ConstIterator begin_from ( K key ) const { return ConstIterator ( static_cast < TreeNode * > ( BaseTree : : find ( this - > m_rootF , key ) ) ) ; }
bool remove ( K key )
{
auto * node = static_cast < TreeNode * > ( BaseTree : : find ( this - > m_root , key ) ) ;
if ( ! node )
return false ;
BaseTree : : remove ( node ) ;
node - > right_child = nullptr ;
node - > left_child = nullptr ;
node - > m_in_tree = false ;
return true ;
}
void clear ( )
{
clear_nodes ( static_cast < TreeNode * > ( this - > m_root ) ) ;
this - > m_root = nullptr ;
this - > m_minimum = nullptr ;
this - > m_size = 0 ;
}
private :
static void clear_nodes ( TreeNode * node )
{
if ( ! node )
return ;
clear_nodes ( static_cast < TreeNode * > ( node - > right_child ) ) ;
node - > right_child = nullptr ;
clear_nodes ( static_cast < TreeNode * > ( node - > left_child ) ) ;
node - > left_child = nullptr ;
node - > m_in_tree = false ;
}
static V * node_to_value ( TreeNode & node )
{
return ( V * ) ( ( u8 * ) & node - ( ( u8 * ) & ( ( ( V * ) nullptr ) - > * member ) - ( u8 * ) nullptr ) ) ;
}
} ;
template < Integral K >
class IntrusiveRedBlackTreeNode : public BaseRedBlackTree < K > : : Node {
public :
IntrusiveRedBlackTreeNode ( K key )
: BaseRedBlackTree < K > : : Node ( key )
{
}
~ IntrusiveRedBlackTreeNode ( )
{
VERIFY ( ! is_in_tree ( ) ) ;
}
bool is_in_tree ( )
{
return m_in_tree ;
}
private :
template < Integral TK , typename V , IntrusiveRedBlackTreeNode < TK > V : : * member >
friend class IntrusiveRedBlackTree ;
bool m_in_tree { false } ;
} ;
}
using AK : : IntrusiveRedBlackTree ;
using AK : : IntrusiveRedBlackTreeNode ;