ladybird/Kernel/Thread.h

1408 lines
45 KiB
C
Raw Normal View History

/*
* Copyright (c) 2018-2020, Andreas Kling <kling@serenityos.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this
* list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <AK/Function.h>
#include <AK/IntrusiveList.h>
#include <AK/Optional.h>
#include <AK/OwnPtr.h>
#include <AK/String.h>
#include <AK/Time.h>
#include <AK/Vector.h>
#include <AK/WeakPtr.h>
#include <AK/Weakable.h>
#include <Kernel/Arch/i386/CPU.h>
#include <Kernel/Arch/i386/SafeMem.h>
Meta: Split debug defines into multiple headers. The following script was used to make these changes: #!/bin/bash set -e tmp=$(mktemp -d) echo "tmp=$tmp" find Kernel \( -name '*.cpp' -o -name '*.h' \) | sort > $tmp/Kernel.files find . \( -path ./Toolchain -prune -o -path ./Build -prune -o -path ./Kernel -prune \) -o \( -name '*.cpp' -o -name '*.h' \) -print | sort > $tmp/EverythingExceptKernel.files cat $tmp/Kernel.files | xargs grep -Eho '[A-Z0-9_]+_DEBUG' | sort | uniq > $tmp/Kernel.macros cat $tmp/EverythingExceptKernel.files | xargs grep -Eho '[A-Z0-9_]+_DEBUG' | sort | uniq > $tmp/EverythingExceptKernel.macros comm -23 $tmp/Kernel.macros $tmp/EverythingExceptKernel.macros > $tmp/Kernel.unique comm -1 $tmp/Kernel.macros $tmp/EverythingExceptKernel.macros > $tmp/EverythingExceptKernel.unique cat $tmp/Kernel.unique | awk '{ print "#cmakedefine01 "$1 }' > $tmp/Kernel.header cat $tmp/EverythingExceptKernel.unique | awk '{ print "#cmakedefine01 "$1 }' > $tmp/EverythingExceptKernel.header for macro in $(cat $tmp/Kernel.unique) do cat $tmp/Kernel.files | xargs grep -l $macro >> $tmp/Kernel.new-includes ||: done cat $tmp/Kernel.new-includes | sort > $tmp/Kernel.new-includes.sorted for macro in $(cat $tmp/EverythingExceptKernel.unique) do cat $tmp/Kernel.files | xargs grep -l $macro >> $tmp/Kernel.old-includes ||: done cat $tmp/Kernel.old-includes | sort > $tmp/Kernel.old-includes.sorted comm -23 $tmp/Kernel.new-includes.sorted $tmp/Kernel.old-includes.sorted > $tmp/Kernel.includes.new comm -13 $tmp/Kernel.new-includes.sorted $tmp/Kernel.old-includes.sorted > $tmp/Kernel.includes.old comm -12 $tmp/Kernel.new-includes.sorted $tmp/Kernel.old-includes.sorted > $tmp/Kernel.includes.mixed for file in $(cat $tmp/Kernel.includes.new) do sed -i -E 's/#include <AK\/Debug\.h>/#include <Kernel\/Debug\.h>/' $file done for file in $(cat $tmp/Kernel.includes.mixed) do echo "mixed include in $file, requires manual editing." done
2021-01-25 16:07:10 +01:00
#include <Kernel/Debug.h>
2020-02-16 01:50:16 +01:00
#include <Kernel/Forward.h>
#include <Kernel/KResult.h>
#include <Kernel/LockMode.h>
#include <Kernel/Scheduler.h>
#include <Kernel/ThreadTracer.h>
#include <Kernel/TimerQueue.h>
#include <Kernel/UnixTypes.h>
#include <LibC/fd_set.h>
#include <LibELF/AuxiliaryVector.h>
namespace Kernel {
extern RecursiveSpinLock s_mm_lock;
enum class DispatchSignalResult {
Deferred = 0,
Yield,
Terminate,
Continue
};
struct SignalActionData {
VirtualAddress handler_or_sigaction;
u32 mask { 0 };
int flags { 0 };
};
struct ThreadSpecificData {
ThreadSpecificData* self;
};
#define THREAD_PRIORITY_MIN 1
#define THREAD_PRIORITY_LOW 10
#define THREAD_PRIORITY_NORMAL 30
#define THREAD_PRIORITY_HIGH 50
#define THREAD_PRIORITY_MAX 99
#define THREAD_AFFINITY_DEFAULT 0xffffffff
class Thread
: public RefCounted<Thread>
, public Weakable<Thread> {
AK_MAKE_NONCOPYABLE(Thread);
AK_MAKE_NONMOVABLE(Thread);
friend class Process;
friend class Scheduler;
friend class ThreadReadyQueue;
public:
inline static Thread* current()
{
return Processor::current_thread();
}
explicit Thread(NonnullRefPtr<Process>);
~Thread();
static RefPtr<Thread> from_tid(ThreadID);
static void finalize_dying_threads();
ThreadID tid() const { return m_tid; }
ProcessID pid() const;
void set_priority(u32 p) { m_priority = p; }
u32 priority() const { return m_priority; }
u32 effective_priority() const { return m_priority; }
void detach()
{
ScopedSpinLock lock(m_lock);
m_is_joinable = false;
}
[[nodiscard]] bool is_joinable() const
{
ScopedSpinLock lock(m_lock);
return m_is_joinable;
}
Process& process() { return m_process; }
const Process& process() const { return m_process; }
String backtrace();
Vector<FlatPtr> raw_backtrace(FlatPtr ebp, FlatPtr eip) const;
String name() const
{
// Because the name can be changed, we can't return a const
// reference here. We must make a copy
ScopedSpinLock lock(m_lock);
return m_name;
}
void set_name(const StringView& s)
{
ScopedSpinLock lock(m_lock);
m_name = s;
}
void set_name(String&& name)
{
ScopedSpinLock lock(m_lock);
m_name = move(name);
}
void finalize();
enum State : u8 {
Invalid = 0,
Runnable,
Running,
Dying,
Dead,
Stopped,
Blocked
};
class BlockResult {
public:
enum Type {
WokeNormally,
NotBlocked,
InterruptedBySignal,
InterruptedByDeath,
InterruptedByTimeout,
};
BlockResult() = delete;
BlockResult(Type type)
: m_type(type)
{
}
bool operator==(Type type) const
{
return m_type == type;
}
bool operator!=(Type type) const
{
return m_type != type;
}
[[nodiscard]] bool was_interrupted() const
{
switch (m_type) {
case InterruptedBySignal:
case InterruptedByDeath:
return true;
default:
return false;
}
}
[[nodiscard]] bool timed_out() const
{
return m_type == InterruptedByTimeout;
}
private:
Type m_type;
};
class BlockTimeout {
public:
BlockTimeout()
: m_infinite(true)
{
}
explicit BlockTimeout(bool is_absolute, const timeval* time, const timespec* start_time = nullptr, clockid_t clock_id = CLOCK_MONOTONIC_COARSE)
: m_clock_id(clock_id)
, m_infinite(!time)
{
if (!m_infinite) {
if (time->tv_sec > 0 || time->tv_usec > 0) {
timeval_to_timespec(*time, m_time);
m_should_block = true;
}
m_start_time = start_time ? *start_time : TimeManagement::the().current_time(clock_id).value();
if (!is_absolute)
timespec_add(m_time, m_start_time, m_time);
}
}
explicit BlockTimeout(bool is_absolute, const timespec* time, const timespec* start_time = nullptr, clockid_t clock_id = CLOCK_MONOTONIC_COARSE)
: m_clock_id(clock_id)
, m_infinite(!time)
{
if (!m_infinite) {
if (time->tv_sec > 0 || time->tv_nsec > 0) {
m_time = *time;
m_should_block = true;
}
m_start_time = start_time ? *start_time : TimeManagement::the().current_time(clock_id).value();
if (!is_absolute)
timespec_add(m_time, m_start_time, m_time);
}
}
const timespec& absolute_time() const { return m_time; }
const timespec* start_time() const { return !m_infinite ? &m_start_time : nullptr; }
clockid_t clock_id() const { return m_clock_id; }
bool is_infinite() const { return m_infinite; }
bool should_block() const { return m_infinite || m_should_block; };
private:
timespec m_time { 0, 0 };
timespec m_start_time { 0, 0 };
clockid_t m_clock_id { CLOCK_MONOTONIC_COARSE };
bool m_infinite { false };
bool m_should_block { false };
};
class BlockCondition;
class Blocker {
public:
enum class Type {
Unknown = 0,
File,
Futex,
Plan9FS,
Join,
Queue,
Routing,
Sleep,
Wait
};
virtual ~Blocker();
virtual const char* state_string() const = 0;
virtual bool should_block() { return true; }
virtual Type blocker_type() const = 0;
virtual const BlockTimeout& override_timeout(const BlockTimeout& timeout) { return timeout; }
virtual bool can_be_interrupted() const { return true; }
virtual void not_blocking(bool) = 0;
virtual void was_unblocked(bool did_timeout)
{
if (did_timeout) {
ScopedSpinLock lock(m_lock);
m_did_timeout = true;
}
}
void set_interrupted_by_death()
{
ScopedSpinLock lock(m_lock);
do_set_interrupted_by_death();
}
void set_interrupted_by_signal(u8 signal)
{
ScopedSpinLock lock(m_lock);
do_set_interrupted_by_signal(signal);
}
u8 was_interrupted_by_signal() const
{
ScopedSpinLock lock(m_lock);
return do_get_interrupted_by_signal();
}
virtual Thread::BlockResult block_result()
{
ScopedSpinLock lock(m_lock);
if (m_was_interrupted_by_death)
return Thread::BlockResult::InterruptedByDeath;
if (m_was_interrupted_by_signal != 0)
return Thread::BlockResult::InterruptedBySignal;
if (m_did_timeout)
return Thread::BlockResult::InterruptedByTimeout;
return Thread::BlockResult::WokeNormally;
}
void begin_blocking(Badge<Thread>);
BlockResult end_blocking(Badge<Thread>, bool);
protected:
void do_set_interrupted_by_death()
{
m_was_interrupted_by_death = true;
}
void do_set_interrupted_by_signal(u8 signal)
{
ASSERT(signal != 0);
m_was_interrupted_by_signal = signal;
}
void do_clear_interrupted_by_signal()
{
m_was_interrupted_by_signal = 0;
}
u8 do_get_interrupted_by_signal() const
{
return m_was_interrupted_by_signal;
}
[[nodiscard]] bool was_interrupted() const
{
return m_was_interrupted_by_death || m_was_interrupted_by_signal != 0;
}
void unblock_from_blocker()
{
RefPtr<Thread> thread;
{
ScopedSpinLock lock(m_lock);
if (m_is_blocking) {
m_is_blocking = false;
ASSERT(m_blocked_thread);
thread = m_blocked_thread;
}
}
if (thread)
thread->unblock_from_blocker(*this);
}
bool set_block_condition(BlockCondition&, void* = nullptr);
void set_block_condition_raw_locked(BlockCondition* block_condition)
{
m_block_condition = block_condition;
}
mutable RecursiveSpinLock m_lock;
private:
BlockCondition* m_block_condition { nullptr };
void* m_block_data { nullptr };
Thread* m_blocked_thread { nullptr };
u8 m_was_interrupted_by_signal { 0 };
bool m_is_blocking { false };
bool m_was_interrupted_by_death { false };
bool m_did_timeout { false };
};
class BlockCondition {
AK_MAKE_NONCOPYABLE(BlockCondition);
AK_MAKE_NONMOVABLE(BlockCondition);
public:
BlockCondition() = default;
virtual ~BlockCondition()
{
ScopedSpinLock lock(m_lock);
ASSERT(m_blockers.is_empty());
}
bool add_blocker(Blocker& blocker, void* data)
{
ScopedSpinLock lock(m_lock);
if (!should_add_blocker(blocker, data))
return false;
m_blockers.append({ &blocker, data });
return true;
}
void remove_blocker(Blocker& blocker, void* data)
{
ScopedSpinLock lock(m_lock);
// NOTE: it's possible that the blocker is no longer present
m_blockers.remove_first_matching([&](auto& info) {
return info.blocker == &blocker && info.data == data;
});
}
bool is_empty() const
{
ScopedSpinLock lock(m_lock);
return is_empty_locked();
}
protected:
template<typename UnblockOne>
bool unblock(UnblockOne unblock_one)
{
ScopedSpinLock lock(m_lock);
return do_unblock(unblock_one);
}
template<typename UnblockOne>
bool do_unblock(UnblockOne unblock_one)
{
ASSERT(m_lock.is_locked());
bool stop_iterating = false;
bool did_unblock = false;
for (size_t i = 0; i < m_blockers.size() && !stop_iterating;) {
auto& info = m_blockers[i];
if (unblock_one(*info.blocker, info.data, stop_iterating)) {
m_blockers.remove(i);
did_unblock = true;
continue;
}
i++;
}
return did_unblock;
}
bool is_empty_locked() const
{
ASSERT(m_lock.is_locked());
return m_blockers.is_empty();
}
virtual bool should_add_blocker(Blocker&, void*) { return true; }
struct BlockerInfo {
Blocker* blocker;
void* data;
};
Vector<BlockerInfo, 4> do_take_blockers(size_t count)
{
if (m_blockers.size() <= count)
return move(m_blockers);
size_t move_count = (count <= m_blockers.size()) ? count : m_blockers.size();
ASSERT(move_count > 0);
Vector<BlockerInfo, 4> taken_blockers;
taken_blockers.ensure_capacity(move_count);
for (size_t i = 0; i < move_count; i++)
taken_blockers.append(m_blockers.take(i));
m_blockers.remove(0, move_count);
return taken_blockers;
}
void do_append_blockers(Vector<BlockerInfo, 4>&& blockers_to_append)
{
if (blockers_to_append.is_empty())
return;
if (m_blockers.is_empty()) {
m_blockers = move(blockers_to_append);
return;
}
m_blockers.ensure_capacity(m_blockers.size() + blockers_to_append.size());
for (size_t i = 0; i < blockers_to_append.size(); i++)
m_blockers.append(blockers_to_append.take(i));
blockers_to_append.clear();
}
mutable SpinLock<u8> m_lock;
private:
Vector<BlockerInfo, 4> m_blockers;
};
friend class JoinBlocker;
class JoinBlocker final : public Blocker {
public:
explicit JoinBlocker(Thread& joinee, KResult& try_join_result, void*& joinee_exit_value);
virtual Type blocker_type() const override { return Type::Join; }
virtual const char* state_string() const override { return "Joining"; }
virtual bool can_be_interrupted() const override { return false; }
virtual bool should_block() override { return !m_join_error && m_should_block; }
virtual void not_blocking(bool) override;
bool unblock(void*, bool);
private:
NonnullRefPtr<Thread> m_joinee;
void*& m_joinee_exit_value;
bool m_join_error { false };
bool m_did_unblock { false };
bool m_should_block { true };
};
class QueueBlocker : public Blocker {
public:
explicit QueueBlocker(WaitQueue&, const char* block_reason = nullptr);
virtual ~QueueBlocker();
virtual Type blocker_type() const override { return Type::Queue; }
virtual const char* state_string() const override { return m_block_reason ? m_block_reason : "Queue"; }
virtual void not_blocking(bool) override { }
virtual bool should_block() override
{
return m_should_block;
}
bool unblock();
protected:
const char* const m_block_reason;
bool m_should_block { true };
bool m_did_unblock { false };
};
class FutexBlocker : public Blocker {
public:
explicit FutexBlocker(FutexQueue&, u32);
virtual ~FutexBlocker();
virtual Type blocker_type() const override { return Type::Futex; }
virtual const char* state_string() const override { return "Futex"; }
virtual void not_blocking(bool) override { }
virtual bool should_block() override
{
return m_should_block;
}
u32 bitset() const { return m_bitset; }
void begin_requeue()
{
// We need to hold the lock until we moved it over
m_relock_flags = m_lock.lock();
}
void finish_requeue(FutexQueue&);
bool unblock_bitset(u32 bitset);
bool unblock(bool force = false);
protected:
u32 m_bitset;
u32 m_relock_flags { 0 };
bool m_should_block { true };
bool m_did_unblock { false };
};
class FileBlocker : public Blocker {
public:
enum class BlockFlags : u32 {
None = 0,
Read = 1 << 0,
Write = 1 << 1,
ReadPriority = 1 << 2,
Accept = 1 << 3,
Connect = 1 << 4,
SocketFlags = Accept | Connect,
WriteNotOpen = 1 << 5,
WriteError = 1 << 6,
WriteHangUp = 1 << 7,
ReadHangUp = 1 << 8,
Exception = WriteNotOpen | WriteError | WriteHangUp | ReadHangUp,
};
virtual Type blocker_type() const override { return Type::File; }
virtual bool should_block() override
{
return m_should_block;
}
virtual bool unblock(bool, void*) = 0;
protected:
bool m_should_block { true };
};
class FileDescriptionBlocker : public FileBlocker {
public:
const FileDescription& blocked_description() const;
virtual bool unblock(bool, void*) override;
virtual void not_blocking(bool) override;
protected:
explicit FileDescriptionBlocker(FileDescription&, BlockFlags, BlockFlags&);
private:
NonnullRefPtr<FileDescription> m_blocked_description;
const BlockFlags m_flags;
BlockFlags& m_unblocked_flags;
bool m_did_unblock { false };
bool m_should_block { true };
};
class AcceptBlocker final : public FileDescriptionBlocker {
public:
explicit AcceptBlocker(FileDescription&, BlockFlags&);
virtual const char* state_string() const override { return "Accepting"; }
};
class ConnectBlocker final : public FileDescriptionBlocker {
public:
explicit ConnectBlocker(FileDescription&, BlockFlags&);
virtual const char* state_string() const override { return "Connecting"; }
};
class WriteBlocker final : public FileDescriptionBlocker {
public:
explicit WriteBlocker(FileDescription&, BlockFlags&);
virtual const char* state_string() const override { return "Writing"; }
virtual const BlockTimeout& override_timeout(const BlockTimeout&) override;
private:
BlockTimeout m_timeout;
};
class ReadBlocker final : public FileDescriptionBlocker {
public:
explicit ReadBlocker(FileDescription&, BlockFlags&);
virtual const char* state_string() const override { return "Reading"; }
virtual const BlockTimeout& override_timeout(const BlockTimeout&) override;
private:
BlockTimeout m_timeout;
};
class SleepBlocker final : public Blocker {
2019-07-18 17:26:11 +02:00
public:
explicit SleepBlocker(const BlockTimeout&, timespec* = nullptr);
virtual const char* state_string() const override { return "Sleeping"; }
virtual Type blocker_type() const override { return Type::Sleep; }
virtual const BlockTimeout& override_timeout(const BlockTimeout&) override;
virtual void not_blocking(bool) override;
virtual void was_unblocked(bool) override;
virtual Thread::BlockResult block_result() override;
2019-07-18 17:26:11 +02:00
private:
void calculate_remaining();
BlockTimeout m_deadline;
timespec* m_remaining;
2019-07-18 17:26:11 +02:00
};
class SelectBlocker final : public FileBlocker {
2019-07-18 17:39:49 +02:00
public:
struct FDInfo {
NonnullRefPtr<FileDescription> description;
BlockFlags block_flags;
BlockFlags unblocked_flags { BlockFlags::None };
};
typedef Vector<FDInfo, FD_SETSIZE> FDVector;
SelectBlocker(FDVector& fds);
virtual ~SelectBlocker();
virtual bool unblock(bool, void*) override;
virtual void not_blocking(bool) override;
virtual void was_unblocked(bool) override;
virtual const char* state_string() const override { return "Selecting"; }
2019-07-18 17:39:49 +02:00
private:
size_t collect_unblocked_flags();
FDVector& m_fds;
bool m_did_unblock { false };
2019-07-18 17:39:49 +02:00
};
class WaitBlocker final : public Blocker {
2019-07-18 18:05:19 +02:00
public:
enum class UnblockFlags {
Terminated,
Stopped,
Continued,
Disowned
};
WaitBlocker(int wait_options, idtype_t id_type, pid_t id, KResultOr<siginfo_t>& result);
virtual const char* state_string() const override { return "Waiting"; }
virtual Type blocker_type() const override { return Type::Wait; }
virtual bool should_block() override { return m_should_block; }
virtual void not_blocking(bool) override;
virtual void was_unblocked(bool) override;
bool unblock(Process& process, UnblockFlags flags, u8 signal, bool from_add_blocker);
bool is_wait() const { return !(m_wait_options & WNOWAIT); }
2019-07-18 18:05:19 +02:00
private:
void do_was_disowned();
void do_set_result(const siginfo_t&);
const int m_wait_options;
const idtype_t m_id_type;
const pid_t m_waitee_id;
KResultOr<siginfo_t>& m_result;
RefPtr<Process> m_waitee;
RefPtr<ProcessGroup> m_waitee_group;
bool m_did_unblock { false };
bool m_error { false };
bool m_got_sigchild { false };
bool m_should_block;
2019-07-18 18:05:19 +02:00
};
class WaitBlockCondition final : public BlockCondition {
friend class WaitBlocker;
public:
WaitBlockCondition(Process& process)
: m_process(process)
{
}
void disowned_by_waiter(Process&);
bool unblock(Process&, WaitBlocker::UnblockFlags, u8);
void try_unblock(WaitBlocker&);
void finalize();
protected:
virtual bool should_add_blocker(Blocker&, void*) override;
private:
struct ProcessBlockInfo {
NonnullRefPtr<Process> process;
WaitBlocker::UnblockFlags flags;
u8 signal;
bool was_waited { false };
explicit ProcessBlockInfo(NonnullRefPtr<Process>&&, WaitBlocker::UnblockFlags, u8);
~ProcessBlockInfo();
};
Process& m_process;
Vector<ProcessBlockInfo, 2> m_processes;
bool m_finalized { false };
};
template<typename AddBlockerHandler>
KResult try_join(AddBlockerHandler add_blocker)
{
if (Thread::current() == this)
return EDEADLK;
ScopedSpinLock lock(m_lock);
if (!m_is_joinable || state() == Dead)
return EINVAL;
add_blocker();
// From this point on the thread is no longer joinable by anyone
// else. It also means that if the join is timed, it becomes
// detached when a timeout happens.
m_is_joinable = false;
return KSuccess;
}
void did_schedule() { ++m_times_scheduled; }
u32 times_scheduled() const { return m_times_scheduled; }
void resume_from_stopped();
[[nodiscard]] bool should_be_stopped() const;
[[nodiscard]] bool is_stopped() const { return m_state == Stopped; }
[[nodiscard]] bool is_blocked() const { return m_state == Blocked; }
[[nodiscard]] bool is_in_block() const
{
ScopedSpinLock lock(m_block_lock);
return m_in_block;
}
u32 cpu() const { return m_cpu.load(AK::MemoryOrder::memory_order_consume); }
void set_cpu(u32 cpu) { m_cpu.store(cpu, AK::MemoryOrder::memory_order_release); }
u32 affinity() const { return m_cpu_affinity; }
void set_affinity(u32 affinity) { m_cpu_affinity = affinity; }
u32 stack_ptr() const { return m_tss.esp; }
RegisterState& get_register_dump_from_stack();
TSS32& tss() { return m_tss; }
const TSS32& tss() const { return m_tss; }
State state() const { return m_state; }
const char* state_string() const;
VirtualAddress thread_specific_data() const { return m_thread_specific_data; }
size_t thread_specific_region_size() const;
size_t thread_specific_region_alignment() const;
ALWAYS_INLINE void yield_if_stopped()
{
// If some thread stopped us, we need to yield to someone else
// We check this when entering/exiting a system call. A thread
// may continue to execute in user land until the next timer
// tick or entering the next system call, or if it's in kernel
// mode then we will intercept prior to returning back to user
// mode.
ScopedSpinLock lock(m_lock);
while (state() == Thread::Stopped) {
lock.unlock();
// We shouldn't be holding the big lock here
yield_while_not_holding_big_lock();
lock.lock();
}
}
template<typename T, class... Args>
[[nodiscard]] BlockResult block(const BlockTimeout& timeout, Args&&... args)
{
ASSERT(!Processor::current().in_irq());
ASSERT(this == Thread::current());
ScopedCritical critical;
ASSERT(!s_mm_lock.own_lock());
ScopedSpinLock block_lock(m_block_lock);
// We need to hold m_block_lock so that nobody can unblock a blocker as soon
// as it is constructed and registered elsewhere
m_in_block = true;
T t(forward<Args>(args)...);
ScopedSpinLock scheduler_lock(g_scheduler_lock);
// Relaxed semantics are fine for timeout_unblocked because we
// synchronize on the spin locks already.
Atomic<bool, AK::MemoryOrder::memory_order_relaxed> timeout_unblocked(false);
RefPtr<Timer> timer;
{
switch (state()) {
case Thread::Stopped:
// It's possible that we were requested to be stopped!
break;
case Thread::Running:
ASSERT(m_blocker == nullptr);
break;
default:
ASSERT_NOT_REACHED();
}
m_blocker = &t;
if (!t.should_block()) {
// Don't block if the wake condition is already met
t.not_blocking(false);
m_blocker = nullptr;
m_in_block = false;
return BlockResult::NotBlocked;
}
auto& block_timeout = t.override_timeout(timeout);
if (!block_timeout.is_infinite()) {
// Process::kill_all_threads may be called at any time, which will mark all
// threads to die. In that case
timer = TimerQueue::the().add_timer_without_id(block_timeout.clock_id(), block_timeout.absolute_time(), [&]() {
ASSERT(!Processor::current().in_irq());
ASSERT(!g_scheduler_lock.own_lock());
ASSERT(!m_block_lock.own_lock());
// NOTE: this may execute on the same or any other processor!
ScopedSpinLock scheduler_lock(g_scheduler_lock);
ScopedSpinLock block_lock(m_block_lock);
if (m_blocker && timeout_unblocked.exchange(true) == false)
unblock();
});
if (!timer) {
// Timeout is already in the past
t.not_blocking(true);
m_blocker = nullptr;
m_in_block = false;
return BlockResult::InterruptedByTimeout;
}
}
t.begin_blocking({});
set_state(Thread::Blocked);
}
scheduler_lock.unlock();
block_lock.unlock();
dbgln<THREAD_DEBUG>("Thread {} blocking on {} ({}) -->", *this, &t, t.state_string());
bool did_timeout = false;
u32 lock_count_to_restore = 0;
auto previous_locked = unlock_process_if_locked(lock_count_to_restore);
for (;;) {
// Yield to the scheduler, and wait for us to resume unblocked.
ASSERT(!g_scheduler_lock.own_lock());
ASSERT(Processor::current().in_critical());
yield_while_not_holding_big_lock();
ASSERT(Processor::current().in_critical());
ScopedSpinLock block_lock2(m_block_lock);
if (should_be_stopped() || state() == Stopped) {
dbgln("Thread should be stopped, current state: {}", state_string());
set_state(Thread::Blocked);
continue;
}
if (m_blocker && !m_blocker->can_be_interrupted() && !m_should_die) {
block_lock2.unlock();
dbgln("Thread should not be unblocking, current state: ", state_string());
set_state(Thread::Blocked);
continue;
}
// Prevent the timeout from unblocking this thread if it happens to
// be in the process of firing already
did_timeout |= timeout_unblocked.exchange(true);
if (m_blocker) {
// Remove ourselves...
ASSERT(m_blocker == &t);
m_blocker = nullptr;
}
dbgln<THREAD_DEBUG>("<-- Thread {} unblocked from {} ({})", *this, &t, t.state_string());
m_in_block = false;
break;
}
if (t.was_interrupted_by_signal()) {
ScopedSpinLock scheduler_lock(g_scheduler_lock);
ScopedSpinLock lock(m_lock);
dispatch_one_pending_signal();
}
// Notify the blocker that we are no longer blocking. It may need
// to clean up now while we're still holding m_lock
auto result = t.end_blocking({}, did_timeout); // calls was_unblocked internally
if (timer && !did_timeout) {
// Cancel the timer while not holding any locks. This allows
// the timer function to complete before we remove it
// (e.g. if it's on another processor)
TimerQueue::the().cancel_timer(timer.release_nonnull());
}
if (previous_locked != LockMode::Unlocked) {
// NOTE: this may trigger another call to Thread::block(), so
// we need to do this after we're all done and restored m_in_block!
relock_process(previous_locked, lock_count_to_restore);
}
return result;
}
void unblock_from_blocker(Blocker&);
void unblock(u8 signal = 0);
template<class... Args>
Thread::BlockResult wait_on(WaitQueue& wait_queue, const Thread::BlockTimeout& timeout, Args&&... args)
{
ASSERT(this == Thread::current());
return block<Thread::QueueBlocker>(timeout, wait_queue, forward<Args>(args)...);
}
BlockResult sleep(clockid_t, const timespec&, timespec* = nullptr);
BlockResult sleep(const timespec& duration, timespec* remaining_time = nullptr)
{
return sleep(CLOCK_MONOTONIC_COARSE, duration, remaining_time);
}
BlockResult sleep_until(clockid_t, const timespec&);
BlockResult sleep_until(const timespec& duration)
{
return sleep_until(CLOCK_MONOTONIC_COARSE, duration);
}
// Tell this thread to unblock if needed,
// gracefully unwind the stack and die.
void set_should_die();
[[nodiscard]] bool should_die() const { return m_should_die; }
void die_if_needed();
void exit(void* = nullptr);
bool tick();
void set_ticks_left(u32 t) { m_ticks_left = t; }
u32 ticks_left() const { return m_ticks_left; }
u32 kernel_stack_base() const { return m_kernel_stack_base; }
u32 kernel_stack_top() const { return m_kernel_stack_top; }
void set_state(State, u8 = 0);
[[nodiscard]] bool is_initialized() const { return m_initialized; }
void set_initialized(bool initialized) { m_initialized = initialized; }
void send_urgent_signal_to_self(u8 signal);
void send_signal(u8 signal, Process* sender);
u32 update_signal_mask(u32 signal_mask);
u32 signal_mask_block(sigset_t signal_set, bool block);
u32 signal_mask() const;
void clear_signals();
void set_dump_backtrace_on_finalization() { m_dump_backtrace_on_finalization = true; }
DispatchSignalResult dispatch_one_pending_signal();
DispatchSignalResult try_dispatch_one_pending_signal(u8 signal);
DispatchSignalResult dispatch_signal(u8 signal);
void check_dispatch_pending_signal();
[[nodiscard]] bool has_unmasked_pending_signals() const { return m_have_any_unmasked_pending_signals.load(AK::memory_order_consume); }
void terminate_due_to_signal(u8 signal);
[[nodiscard]] bool should_ignore_signal(u8 signal) const;
[[nodiscard]] bool has_signal_handler(u8 signal) const;
[[nodiscard]] bool has_pending_signal(u8 signal) const;
u32 pending_signals() const;
u32 pending_signals_for_state() const;
FPUState& fpu_state() { return *m_fpu_state; }
void set_default_signal_dispositions();
bool push_value_on_stack(FlatPtr);
KResult make_thread_specific_region(Badge<Process>);
unsigned syscall_count() const { return m_syscall_count; }
void did_syscall() { ++m_syscall_count; }
unsigned inode_faults() const { return m_inode_faults; }
void did_inode_fault() { ++m_inode_faults; }
unsigned zero_faults() const { return m_zero_faults; }
void did_zero_fault() { ++m_zero_faults; }
unsigned cow_faults() const { return m_cow_faults; }
void did_cow_fault() { ++m_cow_faults; }
unsigned file_read_bytes() const { return m_file_read_bytes; }
unsigned file_write_bytes() const { return m_file_write_bytes; }
void did_file_read(unsigned bytes)
{
m_file_read_bytes += bytes;
}
void did_file_write(unsigned bytes)
{
m_file_write_bytes += bytes;
}
unsigned unix_socket_read_bytes() const { return m_unix_socket_read_bytes; }
unsigned unix_socket_write_bytes() const { return m_unix_socket_write_bytes; }
void did_unix_socket_read(unsigned bytes)
{
m_unix_socket_read_bytes += bytes;
}
void did_unix_socket_write(unsigned bytes)
{
m_unix_socket_write_bytes += bytes;
}
unsigned ipv4_socket_read_bytes() const { return m_ipv4_socket_read_bytes; }
unsigned ipv4_socket_write_bytes() const { return m_ipv4_socket_write_bytes; }
void did_ipv4_socket_read(unsigned bytes)
{
m_ipv4_socket_read_bytes += bytes;
}
void did_ipv4_socket_write(unsigned bytes)
{
m_ipv4_socket_write_bytes += bytes;
}
void set_active(bool active) { m_is_active = active; }
u32 saved_critical() const { return m_saved_critical; }
void save_critical(u32 critical) { m_saved_critical = critical; }
[[nodiscard]] bool is_active() const { return m_is_active; }
[[nodiscard]] bool is_finalizable() const
{
// We can't finalize as long as this thread is still running
// Note that checking for Running state here isn't sufficient
// as the thread may not be in Running state but switching out.
// m_is_active is set to false once the context switch is
// complete and the thread is not executing on any processor.
if (m_is_active.load(AK::memory_order_acquire))
return false;
// We can't finalize until the thread is either detached or
// a join has started. We can't make m_is_joinable atomic
// because that would introduce a race in try_join.
ScopedSpinLock lock(m_lock);
return !m_is_joinable;
}
RefPtr<Thread> clone(Process&);
template<typename Callback>
static IterationDecision for_each_in_state(State, Callback);
template<typename Callback>
static IterationDecision for_each_living(Callback);
template<typename Callback>
static IterationDecision for_each(Callback);
[[nodiscard]] static bool is_runnable_state(Thread::State state)
{
return state == Thread::State::Running || state == Thread::State::Runnable;
}
static constexpr u32 default_kernel_stack_size = 65536;
static constexpr u32 default_userspace_stack_size = 4 * MiB;
u32 ticks_in_user() const { return m_ticks_in_user; }
u32 ticks_in_kernel() const { return m_ticks_in_kernel; }
enum class PreviousMode : u8 {
KernelMode = 0,
UserMode
};
PreviousMode previous_mode() const { return m_previous_mode; }
void set_previous_mode(PreviousMode mode) { m_previous_mode = mode; }
TrapFrame*& current_trap() { return m_current_trap; }
RecursiveSpinLock& get_lock() const { return m_lock; }
#if LOCK_DEBUG
void holding_lock(Lock& lock, int refs_delta, const char* file = nullptr, int line = 0)
{
ASSERT(refs_delta != 0);
m_holding_locks.fetch_add(refs_delta, AK::MemoryOrder::memory_order_relaxed);
ScopedSpinLock list_lock(m_holding_locks_lock);
if (refs_delta > 0) {
bool have_existing = false;
for (size_t i = 0; i < m_holding_locks_list.size(); i++) {
auto& info = m_holding_locks_list[i];
if (info.lock == &lock) {
have_existing = true;
info.count += refs_delta;
break;
}
}
if (!have_existing)
m_holding_locks_list.append({ &lock, file ? file : "unknown", line, 1 });
} else {
ASSERT(refs_delta < 0);
bool found = false;
for (size_t i = 0; i < m_holding_locks_list.size(); i++) {
auto& info = m_holding_locks_list[i];
if (info.lock == &lock) {
ASSERT(info.count >= (unsigned)-refs_delta);
info.count -= (unsigned)-refs_delta;
if (info.count == 0)
m_holding_locks_list.remove(i);
found = true;
break;
}
}
ASSERT(found);
}
}
u32 lock_count() const
{
return m_holding_locks.load(AK::MemoryOrder::memory_order_relaxed);
}
#endif
bool was_created() const
{
return m_kernel_stack_region;
}
bool is_handling_page_fault() const { return m_handling_page_fault; }
void set_handling_page_fault(bool b) { m_handling_page_fault = b; }
private:
IntrusiveListNode m_process_thread_list_node;
IntrusiveListNode m_runnable_list_node;
int m_runnable_priority { -1 };
friend struct SchedulerData;
friend class WaitQueue;
class JoinBlockCondition : public BlockCondition {
public:
void thread_did_exit(void* exit_value)
{
ScopedSpinLock lock(m_lock);
ASSERT(!m_thread_did_exit);
m_thread_did_exit = true;
m_exit_value.store(exit_value, AK::MemoryOrder::memory_order_release);
do_unblock_joiner();
}
void thread_finalizing()
{
ScopedSpinLock lock(m_lock);
do_unblock_joiner();
}
void* exit_value() const
{
ASSERT(m_thread_did_exit);
return m_exit_value.load(AK::MemoryOrder::memory_order_acquire);
}
void try_unblock(JoinBlocker& blocker)
{
ScopedSpinLock lock(m_lock);
if (m_thread_did_exit)
blocker.unblock(exit_value(), false);
}
protected:
virtual bool should_add_blocker(Blocker& b, void*) override
{
ASSERT(b.blocker_type() == Blocker::Type::Join);
auto& blocker = static_cast<JoinBlocker&>(b);
// NOTE: m_lock is held already!
if (m_thread_did_exit) {
blocker.unblock(exit_value(), true);
return false;
}
return true;
}
private:
void do_unblock_joiner()
{
do_unblock([&](Blocker& b, void*, bool&) {
ASSERT(b.blocker_type() == Blocker::Type::Join);
auto& blocker = static_cast<JoinBlocker&>(b);
return blocker.unblock(exit_value(), false);
});
}
Atomic<void*> m_exit_value { nullptr };
bool m_thread_did_exit { false };
};
LockMode unlock_process_if_locked(u32&);
void relock_process(LockMode, u32);
String backtrace_impl();
2020-02-18 13:44:27 +01:00
void reset_fpu_state();
mutable RecursiveSpinLock m_lock;
mutable RecursiveSpinLock m_block_lock;
NonnullRefPtr<Process> m_process;
ThreadID m_tid { -1 };
TSS32 m_tss;
TrapFrame* m_current_trap { nullptr };
u32 m_saved_critical { 1 };
IntrusiveListNode m_ready_queue_node;
Atomic<u32> m_cpu { 0 };
u32 m_cpu_affinity { THREAD_AFFINITY_DEFAULT };
u32 m_ticks_left { 0 };
u32 m_times_scheduled { 0 };
u32 m_ticks_in_user { 0 };
u32 m_ticks_in_kernel { 0 };
u32 m_pending_signals { 0 };
u32 m_signal_mask { 0 };
u32 m_kernel_stack_base { 0 };
u32 m_kernel_stack_top { 0 };
OwnPtr<Region> m_kernel_stack_region;
VirtualAddress m_thread_specific_data;
SignalActionData m_signal_action_data[32];
Blocker* m_blocker { nullptr };
#if LOCK_DEBUG
struct HoldingLockInfo {
Lock* lock;
const char* file;
int line;
unsigned count;
};
Atomic<u32> m_holding_locks { 0 };
SpinLock<u8> m_holding_locks_lock;
Vector<HoldingLockInfo> m_holding_locks_list;
#endif
JoinBlockCondition m_join_condition;
Atomic<bool, AK::MemoryOrder::memory_order_relaxed> m_is_active { false };
bool m_is_joinable { true };
bool m_handling_page_fault { false };
PreviousMode m_previous_mode { PreviousMode::UserMode };
unsigned m_syscall_count { 0 };
unsigned m_inode_faults { 0 };
unsigned m_zero_faults { 0 };
unsigned m_cow_faults { 0 };
unsigned m_file_read_bytes { 0 };
unsigned m_file_write_bytes { 0 };
unsigned m_unix_socket_read_bytes { 0 };
unsigned m_unix_socket_write_bytes { 0 };
unsigned m_ipv4_socket_read_bytes { 0 };
unsigned m_ipv4_socket_write_bytes { 0 };
FPUState* m_fpu_state { nullptr };
State m_state { Invalid };
String m_name;
u32 m_priority { THREAD_PRIORITY_NORMAL };
State m_stop_state { Invalid };
bool m_dump_backtrace_on_finalization { false };
bool m_should_die { false };
bool m_initialized { false };
bool m_in_block { false };
Atomic<bool> m_have_any_unmasked_pending_signals { false };
void yield_without_holding_big_lock();
void donate_without_holding_big_lock(RefPtr<Thread>&, const char*);
void yield_while_not_holding_big_lock();
void update_state_for_thread(Thread::State previous_state);
void drop_thread_count(bool);
};
template<typename Callback>
inline IterationDecision Thread::for_each_living(Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
return Thread::for_each([callback](Thread& thread) -> IterationDecision {
if (thread.state() != Thread::State::Dead && thread.state() != Thread::State::Dying)
return callback(thread);
return IterationDecision::Continue;
});
}
template<typename Callback>
inline IterationDecision Thread::for_each(Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
ScopedSpinLock lock(g_scheduler_lock);
auto ret = Scheduler::for_each_runnable(callback);
if (ret == IterationDecision::Break)
return ret;
return Scheduler::for_each_nonrunnable(callback);
}
template<typename Callback>
inline IterationDecision Thread::for_each_in_state(State state, Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
ScopedSpinLock lock(g_scheduler_lock);
auto new_callback = [=](Thread& thread) -> IterationDecision {
if (thread.state() == state)
return callback(thread);
return IterationDecision::Continue;
};
if (is_runnable_state(state))
return Scheduler::for_each_runnable(new_callback);
return Scheduler::for_each_nonrunnable(new_callback);
}
const LogStream& operator<<(const LogStream&, const Thread&);
struct SchedulerData {
typedef IntrusiveList<Thread, &Thread::m_runnable_list_node> ThreadList;
ThreadList m_runnable_threads;
ThreadList m_nonrunnable_threads;
bool has_thread(Thread& thread) const
{
return m_runnable_threads.contains(thread) || m_nonrunnable_threads.contains(thread);
}
ThreadList& thread_list_for_state(Thread::State state)
{
if (Thread::is_runnable_state(state))
return m_runnable_threads;
return m_nonrunnable_threads;
}
};
template<typename Callback>
inline IterationDecision Scheduler::for_each_runnable(Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(g_scheduler_lock.own_lock());
auto& tl = g_scheduler_data->m_runnable_threads;
for (auto it = tl.begin(); it != tl.end();) {
auto& thread = *it;
it = ++it;
if (callback(thread) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
template<typename Callback>
inline IterationDecision Scheduler::for_each_nonrunnable(Callback callback)
{
ASSERT_INTERRUPTS_DISABLED();
ASSERT(g_scheduler_lock.own_lock());
auto& tl = g_scheduler_data->m_nonrunnable_threads;
for (auto it = tl.begin(); it != tl.end();) {
auto& thread = *it;
it = ++it;
if (callback(thread) == IterationDecision::Break)
return IterationDecision::Break;
}
return IterationDecision::Continue;
}
}
template<>
struct AK::Formatter<Kernel::Thread> : AK::Formatter<FormatString> {
void format(FormatBuilder&, const Kernel::Thread&);
};