AK: Make IntrusiveRedBlackTree capable of holding non-raw pointers

This is completely based on e4412f1f59
and will allow us to convert some AK::HashMap users in the kernel.
This commit is contained in:
Idan Horowitz 2021-09-08 01:57:49 +03:00
parent 7bb3b2839e
commit 1db9250766
Notes: sideshowbarker 2024-07-18 04:26:03 +09:00
4 changed files with 159 additions and 35 deletions

29
AK/IntrusiveDetails.h Normal file
View file

@ -0,0 +1,29 @@
/*
* Copyright (c) 2021, Ali Mohammad Pur <mpfard@serenityos.org>
*
* SPDX-License-Identifier: BSD-2-Clause
*/
#pragma once
namespace AK::Detail {
template<typename T, typename Container>
struct SubstituteIntrusiveContainerType {
using Type = Container;
};
template<typename T>
struct SubstituteIntrusiveContainerType<T, NonnullRefPtr<T>> {
using Type = RefPtr<T>;
};
template<typename Container, bool _IsRaw>
struct SelfReferenceIfNeeded {
Container reference = nullptr;
};
template<typename Container>
struct SelfReferenceIfNeeded<Container, true> {
};
}

View file

@ -9,6 +9,7 @@
#include <AK/Assertions.h>
#include <AK/BitCast.h>
#include <AK/Forward.h>
#include <AK/IntrusiveDetails.h>
#include <AK/Noncopyable.h>
#include <AK/StdLibExtras.h>
@ -17,20 +18,10 @@ namespace AK {
namespace Detail {
template<typename T, typename Container = RawPtr<T>>
class IntrusiveListNode;
template<typename T, typename Container>
struct SubstituteIntrusiveListNodeContainerType {
using Type = Container;
};
template<typename T>
struct SubstituteIntrusiveListNodeContainerType<T, NonnullRefPtr<T>> {
using Type = RefPtr<T>;
};
}
template<typename T, typename Container = RawPtr<T>>
using IntrusiveListNode = Detail::IntrusiveListNode<T, typename Detail::SubstituteIntrusiveListNodeContainerType<T, Container>::Type>;
using IntrusiveListNode = Detail::IntrusiveListNode<T, typename Detail::SubstituteIntrusiveContainerType<T, Container>::Type>;
template<typename T, typename Container>
class IntrusiveListStorage {
@ -157,14 +148,6 @@ private:
IntrusiveListStorage<T, Container> m_storage;
};
template<typename Contained, bool _IsRaw>
struct SelfReferenceIfNeeded {
Contained reference = nullptr;
};
template<typename Contained>
struct SelfReferenceIfNeeded<Contained, true> {
};
namespace Detail {
template<typename T, typename Container>

View file

@ -6,15 +6,21 @@
#pragma once
#include <AK/IntrusiveDetails.h>
#include <AK/RedBlackTree.h>
namespace AK {
template<Integral K>
namespace Detail {
template<Integral K, typename V, typename Container = RawPtr<V>>
class IntrusiveRedBlackTreeNode;
}
template<Integral K, typename V, IntrusiveRedBlackTreeNode<K> V::*member>
class IntrusiveRedBlackTree final : public BaseRedBlackTree<K> {
template<Integral K, typename V, typename Container = RawPtr<V>>
using IntrusiveRedBlackTreeNode = Detail::IntrusiveRedBlackTreeNode<K, V, typename Detail::SubstituteIntrusiveContainerType<V, Container>::Type>;
template<Integral K, typename V, typename Container, IntrusiveRedBlackTreeNode<K, V, Container> V::*member>
class IntrusiveRedBlackTree : public BaseRedBlackTree<K> {
public:
IntrusiveRedBlackTree() = default;
@ -24,9 +30,9 @@ public:
}
using BaseTree = BaseRedBlackTree<K>;
using TreeNode = IntrusiveRedBlackTreeNode<K>;
using TreeNode = IntrusiveRedBlackTreeNode<K, V, Container>;
V* find(K key)
Container find(K key)
{
auto* node = static_cast<TreeNode*>(BaseTree::find(this->m_root, key));
if (!node)
@ -34,7 +40,7 @@ public:
return node_to_value(*node);
}
V* find_largest_not_above(K key)
Container find_largest_not_above(K key)
{
auto* node = static_cast<TreeNode*>(BaseTree::find_largest_not_above(this->m_root, key));
if (!node)
@ -45,7 +51,10 @@ public:
void insert(V& value)
{
auto& node = value.*member;
VERIFY(!node.m_in_tree);
BaseTree::insert(&node);
if constexpr (!TreeNode::IsRaw)
node.m_self.reference = &value; // Note: Self-reference ensures that the object will keep a ref to itself when the Container is a smart pointer.
node.m_in_tree = true;
}
@ -76,7 +85,7 @@ public:
VERIFY(m_node);
return *node_to_value(*m_node);
}
ElementType* operator->()
auto operator->()
{
VERIFY(m_node);
return node_to_value(*m_node);
@ -117,6 +126,8 @@ public:
node->right_child = nullptr;
node->left_child = nullptr;
node->m_in_tree = false;
if constexpr (!TreeNode::IsRaw)
node->m_self.reference = nullptr;
return true;
}
@ -139,6 +150,8 @@ private:
clear_nodes(static_cast<TreeNode*>(node->left_child));
node->left_child = nullptr;
node->m_in_tree = false;
if constexpr (!TreeNode::IsRaw)
node->m_self.reference = nullptr;
}
static V* node_to_value(TreeNode& node)
@ -147,7 +160,9 @@ private:
}
};
template<Integral K>
namespace Detail {
template<Integral K, typename V, typename Container>
class IntrusiveRedBlackTreeNode : public BaseRedBlackTree<K>::Node {
public:
IntrusiveRedBlackTreeNode(K key)
@ -165,10 +180,28 @@ public:
return m_in_tree;
}
static constexpr bool IsRaw = IsPointer<Container>;
#ifndef __clang__
private:
template<Integral TK, typename V, IntrusiveRedBlackTreeNode<TK> V::*member>
friend class IntrusiveRedBlackTree;
template<Integral TK, typename TV, typename TContainer, IntrusiveRedBlackTreeNode<TK, TV, TContainer> TV::*member>
friend class ::AK::IntrusiveRedBlackTree;
#endif
bool m_in_tree { false };
[[no_unique_address]] SelfReferenceIfNeeded<Container, IsRaw> m_self;
};
}
// Specialise IntrusiveRedBlackTree for NonnullRefPtr
// By default, red black trees cannot contain null entries anyway, so switch to RefPtr
// and just make the user-facing functions deref the pointers.
template<Integral K, typename V, IntrusiveRedBlackTreeNode<K, V, NonnullRefPtr<V>> V::*member>
class IntrusiveRedBlackTree<K, V, NonnullRefPtr<V>, member> : public IntrusiveRedBlackTree<K, V, RefPtr<V>, member> {
public:
[[nodiscard]] NonnullRefPtr<V> find(K key) const { return IntrusiveRedBlackTree<K, V, RefPtr<V>, member>::find(key).release_nonnull(); }
[[nodiscard]] NonnullRefPtr<V> find_largest_not_above(K key) const { return IntrusiveRedBlackTree<K, V, RefPtr<V>, member>::find_largest_not_above(key).release_nonnull(); }
};
}

View file

@ -18,20 +18,21 @@ public:
{
}
IntrusiveRedBlackTreeNode<int> m_tree_node;
IntrusiveRedBlackTreeNode<int, IntrusiveTest, RawPtr<IntrusiveTest>> m_tree_node;
int m_some_value;
};
using IntrusiveRBTree = IntrusiveRedBlackTree<int, IntrusiveTest, RawPtr<IntrusiveTest>, &IntrusiveTest::m_tree_node>;
TEST_CASE(construct)
{
IntrusiveRedBlackTree<int, IntrusiveTest, &IntrusiveTest::m_tree_node> empty;
IntrusiveRBTree empty;
EXPECT(empty.is_empty());
EXPECT(empty.size() == 0);
}
TEST_CASE(ints)
{
IntrusiveRedBlackTree<int, IntrusiveTest, &IntrusiveTest::m_tree_node> test;
IntrusiveRBTree test;
IntrusiveTest first { 1, 10 };
test.insert(first);
IntrusiveTest second { 3, 20 };
@ -51,7 +52,7 @@ TEST_CASE(ints)
TEST_CASE(largest_smaller_than)
{
IntrusiveRedBlackTree<int, IntrusiveTest, &IntrusiveTest::m_tree_node> test;
IntrusiveRBTree test;
IntrusiveTest first { 1, 10 };
test.insert(first);
IntrusiveTest second { 11, 20 };
@ -71,7 +72,7 @@ TEST_CASE(largest_smaller_than)
TEST_CASE(key_ordered_iteration)
{
constexpr auto amount = 10000;
IntrusiveRedBlackTree<int, IntrusiveTest, &IntrusiveTest::m_tree_node> test;
IntrusiveRBTree test;
NonnullOwnPtrVector<IntrusiveTest> m_entries;
Array<int, amount> keys {};
@ -104,7 +105,7 @@ TEST_CASE(key_ordered_iteration)
TEST_CASE(clear)
{
IntrusiveRedBlackTree<int, IntrusiveTest, &IntrusiveTest::m_tree_node> test;
IntrusiveRBTree test;
NonnullOwnPtrVector<IntrusiveTest> m_entries;
for (size_t i = 0; i < 1000; i++) {
auto entry = make<IntrusiveTest>(i, i);
@ -114,3 +115,81 @@ TEST_CASE(clear)
test.clear();
EXPECT_EQ(test.size(), 0u);
}
class IntrusiveRefPtrTest : public RefCounted<IntrusiveRefPtrTest> {
public:
IntrusiveRefPtrTest(int key)
: m_tree_node(key)
{
}
IntrusiveRedBlackTreeNode<int, IntrusiveRefPtrTest, RefPtr<IntrusiveRefPtrTest>> m_tree_node;
};
using IntrusiveRefPtrRBTree = IntrusiveRedBlackTree<int, IntrusiveRefPtrTest, RefPtr<IntrusiveRefPtrTest>, &IntrusiveRefPtrTest::m_tree_node>;
TEST_CASE(intrusive_ref_ptr_no_ref_leaks)
{
auto item = adopt_ref(*new IntrusiveRefPtrTest(0));
EXPECT_EQ(1u, item->ref_count());
IntrusiveRefPtrRBTree ref_tree;
ref_tree.insert(*item);
EXPECT_EQ(2u, item->ref_count());
ref_tree.remove(0);
EXPECT_EQ(1u, item->ref_count());
}
TEST_CASE(intrusive_ref_ptr_clear)
{
auto item = adopt_ref(*new IntrusiveRefPtrTest(0));
EXPECT_EQ(1u, item->ref_count());
IntrusiveRefPtrRBTree ref_tree;
ref_tree.insert(*item);
EXPECT_EQ(2u, item->ref_count());
ref_tree.clear();
EXPECT_EQ(1u, item->ref_count());
}
TEST_CASE(intrusive_ref_ptr_destructor)
{
auto item = adopt_ref(*new IntrusiveRefPtrTest(0));
EXPECT_EQ(1u, item->ref_count());
{
IntrusiveRefPtrRBTree ref_tree;
ref_tree.insert(*item);
EXPECT_EQ(2u, item->ref_count());
}
EXPECT_EQ(1u, item->ref_count());
}
class IntrusiveNonnullRefPtrTest : public RefCounted<IntrusiveNonnullRefPtrTest> {
public:
IntrusiveNonnullRefPtrTest(int key)
: m_tree_node(key)
{
}
IntrusiveRedBlackTreeNode<int, IntrusiveNonnullRefPtrTest, NonnullRefPtr<IntrusiveNonnullRefPtrTest>> m_tree_node;
};
using IntrusiveNonnullRefPtrRBTree = IntrusiveRedBlackTree<int, IntrusiveNonnullRefPtrTest, NonnullRefPtr<IntrusiveNonnullRefPtrTest>, &IntrusiveNonnullRefPtrTest::m_tree_node>;
TEST_CASE(intrusive_nonnull_ref_ptr_intrusive)
{
auto item = adopt_ref(*new IntrusiveNonnullRefPtrTest(0));
EXPECT_EQ(1u, item->ref_count());
IntrusiveNonnullRefPtrRBTree nonnull_ref_tree;
nonnull_ref_tree.insert(*item);
EXPECT_EQ(2u, item->ref_count());
EXPECT(!nonnull_ref_tree.is_empty());
nonnull_ref_tree.remove(0);
EXPECT_EQ(1u, item->ref_count());
EXPECT(nonnull_ref_tree.is_empty());
}