mirror of
https://github.com/LadybirdBrowser/ladybird.git
synced 2025-01-23 09:46:04 -05:00
Kernel: Make Heap implementation reusable, and make kmalloc expandable
Add an ExpandableHeap and switch kmalloc to use it, which allows for the kmalloc heap to grow as needed. In order to make heap expansion to work, we keep around a 1 MiB backup memory region, because creating a region would require space in the same heap. This means, the heap will grow as soon as the reported utilization is less than 1 MiB. It will also return memory if an entire subheap is no longer needed, although that is rarely possible.
This commit is contained in:
parent
8ecc3d31d1
commit
4b66692a55
Notes:
sideshowbarker
2024-07-19 03:00:15 +09:00
Author: https://github.com/tomuta Commit: https://github.com/SerenityOS/serenity/commit/4b66692a553 Pull-request: https://github.com/SerenityOS/serenity/pull/3350
7 changed files with 541 additions and 132 deletions
|
@ -797,17 +797,21 @@ static Optional<KBuffer> procfs$cpuinfo(InodeIdentifier)
|
|||
Optional<KBuffer> procfs$memstat(InodeIdentifier)
|
||||
{
|
||||
InterruptDisabler disabler;
|
||||
|
||||
kmalloc_stats stats;
|
||||
get_kmalloc_stats(stats);
|
||||
|
||||
KBufferBuilder builder;
|
||||
JsonObjectSerializer<KBufferBuilder> json { builder };
|
||||
json.add("kmalloc_allocated", g_kmalloc_bytes_allocated);
|
||||
json.add("kmalloc_available", g_kmalloc_bytes_free);
|
||||
json.add("kmalloc_eternal_allocated", g_kmalloc_bytes_eternal);
|
||||
json.add("kmalloc_allocated", stats.bytes_allocated);
|
||||
json.add("kmalloc_available", stats.bytes_free);
|
||||
json.add("kmalloc_eternal_allocated", stats.bytes_eternal);
|
||||
json.add("user_physical_allocated", MM.user_physical_pages_used());
|
||||
json.add("user_physical_available", MM.user_physical_pages() - MM.user_physical_pages_used());
|
||||
json.add("super_physical_allocated", MM.super_physical_pages_used());
|
||||
json.add("super_physical_available", MM.super_physical_pages() - MM.super_physical_pages_used());
|
||||
json.add("kmalloc_call_count", g_kmalloc_call_count);
|
||||
json.add("kfree_call_count", g_kfree_call_count);
|
||||
json.add("kmalloc_call_count", stats.kmalloc_call_count);
|
||||
json.add("kfree_call_count", stats.kfree_call_count);
|
||||
slab_alloc_stats([&json](size_t slab_size, size_t num_allocated, size_t num_free) {
|
||||
auto prefix = String::format("slab_%zu", slab_size);
|
||||
json.add(String::format("%s_num_allocated", prefix.characters()), num_allocated);
|
||||
|
|
363
Kernel/Heap/Heap.h
Normal file
363
Kernel/Heap/Heap.h
Normal file
|
@ -0,0 +1,363 @@
|
|||
/*
|
||||
* Copyright (c) 2020, The SerenityOS developers.
|
||||
* All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions are met:
|
||||
*
|
||||
* 1. Redistributions of source code must retain the above copyright notice, this
|
||||
* list of conditions and the following disclaimer.
|
||||
*
|
||||
* 2. Redistributions in binary form must reproduce the above copyright notice,
|
||||
* this list of conditions and the following disclaimer in the documentation
|
||||
* and/or other materials provided with the distribution.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
||||
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
||||
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
||||
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
||||
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
||||
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||||
*/
|
||||
|
||||
#pragma once
|
||||
|
||||
#include <AK/Bitmap.h>
|
||||
#include <AK/ScopeGuard.h>
|
||||
#include <AK/Vector.h>
|
||||
#include <AK/kmalloc.h>
|
||||
|
||||
namespace Kernel {
|
||||
|
||||
template<size_t CHUNK_SIZE, unsigned HEAP_SCRUB_BYTE_ALLOC = 0, unsigned HEAP_SCRUB_BYTE_FREE = 0>
|
||||
class Heap {
|
||||
AK_MAKE_NONCOPYABLE(Heap);
|
||||
|
||||
struct AllocationHeader {
|
||||
size_t allocation_size_in_chunks;
|
||||
u8 data[0];
|
||||
};
|
||||
|
||||
static size_t calculate_chunks(size_t memory_size)
|
||||
{
|
||||
return (sizeof(u8) * memory_size) / (sizeof(u8) * CHUNK_SIZE + 1);
|
||||
}
|
||||
|
||||
public:
|
||||
Heap(u8* memory, size_t memory_size)
|
||||
: m_total_chunks(calculate_chunks(memory_size))
|
||||
, m_chunks(memory)
|
||||
, m_bitmap(Bitmap::wrap(memory + m_total_chunks * CHUNK_SIZE, m_total_chunks))
|
||||
{
|
||||
// To keep the alignment of the memory passed in, place the bitmap
|
||||
// at the end of the memory block.
|
||||
ASSERT(m_total_chunks * CHUNK_SIZE + (m_total_chunks + 7) / 8 <= memory_size);
|
||||
}
|
||||
~Heap()
|
||||
{
|
||||
}
|
||||
|
||||
static size_t calculate_memory_for_bytes(size_t bytes)
|
||||
{
|
||||
size_t needed_chunks = (sizeof(AllocationHeader) + bytes + CHUNK_SIZE - 1) / CHUNK_SIZE;
|
||||
return needed_chunks * CHUNK_SIZE + (needed_chunks + 7) / 8;
|
||||
}
|
||||
|
||||
void* allocate(size_t size)
|
||||
{
|
||||
// We need space for the AllocationHeader at the head of the block.
|
||||
size_t real_size = size + sizeof(AllocationHeader);
|
||||
size_t chunks_needed = (real_size + CHUNK_SIZE - 1) / CHUNK_SIZE;
|
||||
|
||||
if (chunks_needed > free_chunks())
|
||||
return nullptr;
|
||||
|
||||
Optional<size_t> first_chunk;
|
||||
|
||||
// Choose the right politic for allocation.
|
||||
constexpr u32 best_fit_threshold = 128;
|
||||
if (chunks_needed < best_fit_threshold) {
|
||||
first_chunk = m_bitmap.find_first_fit(chunks_needed);
|
||||
} else {
|
||||
first_chunk = m_bitmap.find_best_fit(chunks_needed);
|
||||
}
|
||||
|
||||
if (!first_chunk.has_value())
|
||||
return nullptr;
|
||||
|
||||
auto* a = (AllocationHeader*)(m_chunks + (first_chunk.value() * CHUNK_SIZE));
|
||||
u8* ptr = a->data;
|
||||
a->allocation_size_in_chunks = chunks_needed;
|
||||
|
||||
m_bitmap.set_range(first_chunk.value(), chunks_needed, true);
|
||||
|
||||
m_allocated_chunks += chunks_needed;
|
||||
if constexpr (HEAP_SCRUB_BYTE_ALLOC != 0) {
|
||||
__builtin_memset(ptr, HEAP_SCRUB_BYTE_ALLOC, (chunks_needed * CHUNK_SIZE) - sizeof(AllocationHeader));
|
||||
}
|
||||
return ptr;
|
||||
}
|
||||
|
||||
void deallocate(void* ptr)
|
||||
{
|
||||
if (!ptr)
|
||||
return;
|
||||
auto* a = (AllocationHeader*)((((u8*)ptr) - sizeof(AllocationHeader)));
|
||||
ASSERT((u8*)a >= m_chunks && (u8*)ptr < m_chunks + m_total_chunks * CHUNK_SIZE);
|
||||
ASSERT((u8*)a + a->allocation_size_in_chunks * CHUNK_SIZE <= m_chunks + m_total_chunks * CHUNK_SIZE);
|
||||
FlatPtr start = ((FlatPtr)a - (FlatPtr)m_chunks) / CHUNK_SIZE;
|
||||
|
||||
m_bitmap.set_range(start, a->allocation_size_in_chunks, false);
|
||||
|
||||
ASSERT(m_allocated_chunks >= a->allocation_size_in_chunks);
|
||||
m_allocated_chunks -= a->allocation_size_in_chunks;
|
||||
|
||||
if constexpr (HEAP_SCRUB_BYTE_FREE != 0) {
|
||||
__builtin_memset(a, HEAP_SCRUB_BYTE_FREE, a->allocation_size_in_chunks * CHUNK_SIZE);
|
||||
}
|
||||
}
|
||||
|
||||
template<typename MainHeap>
|
||||
void* reallocate(void* ptr, size_t new_size, MainHeap& h)
|
||||
{
|
||||
if (!ptr)
|
||||
return h.allocate(new_size);
|
||||
|
||||
auto* a = (AllocationHeader*)((((u8*)ptr) - sizeof(AllocationHeader)));
|
||||
ASSERT((u8*)a >= m_chunks && (u8*)ptr < m_chunks + m_total_chunks * CHUNK_SIZE);
|
||||
ASSERT((u8*)a + a->allocation_size_in_chunks * CHUNK_SIZE <= m_chunks + m_total_chunks * CHUNK_SIZE);
|
||||
|
||||
size_t old_size = a->allocation_size_in_chunks * CHUNK_SIZE;
|
||||
|
||||
if (old_size == new_size)
|
||||
return ptr;
|
||||
|
||||
auto* new_ptr = h.allocate(new_size);
|
||||
if (new_ptr)
|
||||
__builtin_memcpy(new_ptr, ptr, min(old_size, new_size));
|
||||
deallocate(ptr);
|
||||
return new_ptr;
|
||||
}
|
||||
|
||||
void* reallocate(void* ptr, size_t new_size)
|
||||
{
|
||||
return reallocate(ptr, new_size, *this);
|
||||
}
|
||||
|
||||
bool contains(const void* ptr) const
|
||||
{
|
||||
const auto* a = (const AllocationHeader*)((((const u8*)ptr) - sizeof(AllocationHeader)));
|
||||
if ((const u8*)a < m_chunks)
|
||||
return false;
|
||||
if ((const u8*)ptr >= m_chunks + m_total_chunks * CHUNK_SIZE)
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
u8* memory() const { return m_chunks; }
|
||||
|
||||
size_t total_chunks() const { return m_total_chunks; }
|
||||
size_t total_bytes() const { return m_total_chunks * CHUNK_SIZE; }
|
||||
size_t free_chunks() const { return m_total_chunks - m_allocated_chunks; };
|
||||
size_t free_bytes() const { return free_chunks() * CHUNK_SIZE; }
|
||||
size_t allocated_chunks() const { return m_allocated_chunks; }
|
||||
size_t allocated_bytes() const { return m_allocated_chunks * CHUNK_SIZE; }
|
||||
|
||||
private:
|
||||
size_t m_total_chunks { 0 };
|
||||
size_t m_allocated_chunks { 0 };
|
||||
u8* m_chunks { nullptr };
|
||||
Bitmap m_bitmap;
|
||||
};
|
||||
|
||||
template<typename ExpandHeap>
|
||||
struct ExpandableHeapTraits {
|
||||
static bool add_memory(ExpandHeap& expand, size_t allocation_request)
|
||||
{
|
||||
return expand.add_memory(allocation_request);
|
||||
}
|
||||
|
||||
static bool remove_memory(ExpandHeap& expand, void* memory)
|
||||
{
|
||||
return expand.remove_memory(memory);
|
||||
}
|
||||
};
|
||||
|
||||
struct DefaultExpandHeap {
|
||||
bool add_memory(size_t)
|
||||
{
|
||||
// Requires explicit implementation
|
||||
return false;
|
||||
}
|
||||
|
||||
bool remove_memory(void*)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
};
|
||||
|
||||
template<size_t CHUNK_SIZE, unsigned HEAP_SCRUB_BYTE_ALLOC = 0, unsigned HEAP_SCRUB_BYTE_FREE = 0, typename ExpandHeap = DefaultExpandHeap>
|
||||
class ExpandableHeap {
|
||||
AK_MAKE_NONCOPYABLE(ExpandableHeap);
|
||||
AK_MAKE_NONMOVABLE(ExpandableHeap);
|
||||
|
||||
public:
|
||||
typedef ExpandHeap ExpandHeapType;
|
||||
typedef Heap<CHUNK_SIZE, HEAP_SCRUB_BYTE_ALLOC, HEAP_SCRUB_BYTE_FREE> HeapType;
|
||||
|
||||
struct SubHeap {
|
||||
HeapType heap;
|
||||
SubHeap* next { nullptr };
|
||||
|
||||
template<typename... Args>
|
||||
SubHeap(Args&&... args)
|
||||
: heap(forward<Args>(args)...)
|
||||
{
|
||||
}
|
||||
};
|
||||
|
||||
ExpandableHeap(u8* memory, size_t memory_size, const ExpandHeapType& expand = ExpandHeapType())
|
||||
: m_heaps(memory, memory_size)
|
||||
, m_expand(expand)
|
||||
{
|
||||
}
|
||||
~ExpandableHeap()
|
||||
{
|
||||
// We don't own the main heap, only remove memory that we added previously
|
||||
SubHeap* next;
|
||||
for (auto* heap = m_heaps.next; heap; heap = next) {
|
||||
next = heap->next;
|
||||
|
||||
heap->~SubHeap();
|
||||
ExpandableHeapTraits<ExpandHeap>::remove_memory(m_expand, (void*)heap);
|
||||
}
|
||||
}
|
||||
|
||||
static size_t calculate_memory_for_bytes(size_t bytes)
|
||||
{
|
||||
return sizeof(SubHeap) + HeapType::calculate_memory_for_bytes(bytes);
|
||||
}
|
||||
|
||||
void* allocate(size_t size)
|
||||
{
|
||||
do {
|
||||
for (auto* subheap = &m_heaps; subheap; subheap = subheap->next) {
|
||||
if (void* ptr = subheap->heap.allocate(size))
|
||||
return ptr;
|
||||
}
|
||||
|
||||
// We need to loop because we won't know how much memory was added.
|
||||
// Even though we make a best guess how much memory needs to be added,
|
||||
// it doesn't guarantee that enough will be available after adding it.
|
||||
// This is especially true for the kmalloc heap, where adding memory
|
||||
// requires several other objects to be allocated just to be able to
|
||||
// expand the heap.
|
||||
} while (ExpandableHeapTraits<ExpandHeap>::add_memory(m_expand, size));
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
void deallocate(void* ptr)
|
||||
{
|
||||
if (!ptr)
|
||||
return;
|
||||
for (auto* subheap = &m_heaps; subheap; subheap = subheap->next) {
|
||||
if (subheap->heap.contains(ptr)) {
|
||||
subheap->heap.deallocate(ptr);
|
||||
if (subheap->heap.allocated_chunks() == 0 && subheap != &m_heaps) {
|
||||
// Since remove_memory may free subheap, we need to save the
|
||||
// next pointer before calling it
|
||||
auto* next_subheap = subheap->next;
|
||||
if (ExpandableHeapTraits<ExpandHeap>::remove_memory(m_expand, subheap)) {
|
||||
auto* subheap2 = m_heaps.next;
|
||||
auto** subheap_link = &m_heaps.next;
|
||||
while (subheap2 != subheap) {
|
||||
subheap_link = &subheap2->next;
|
||||
subheap2 = subheap2->next;
|
||||
}
|
||||
*subheap_link = next_subheap;
|
||||
}
|
||||
}
|
||||
return;
|
||||
}
|
||||
}
|
||||
ASSERT_NOT_REACHED();
|
||||
}
|
||||
|
||||
void* reallocate(void* ptr, size_t new_size)
|
||||
{
|
||||
if (!ptr)
|
||||
return allocate(new_size);
|
||||
for (auto* subheap = &m_heaps; subheap; subheap = subheap->next) {
|
||||
if (subheap->heap.contains(ptr))
|
||||
return subheap->heap.reallocate(ptr, new_size, *this);
|
||||
}
|
||||
ASSERT_NOT_REACHED();
|
||||
}
|
||||
|
||||
HeapType& add_subheap(void* memory, size_t memory_size)
|
||||
{
|
||||
ASSERT(memory_size > sizeof(SubHeap));
|
||||
|
||||
// Place the SubHeap structure at the beginning of the new memory block
|
||||
memory_size -= sizeof(SubHeap);
|
||||
SubHeap* new_heap = (SubHeap*)memory;
|
||||
new (new_heap) SubHeap((u8*)(new_heap + 1), memory_size);
|
||||
|
||||
// Add the subheap to the list (but leave the main heap where it is)
|
||||
SubHeap* next_heap = m_heaps.next;
|
||||
SubHeap** next_heap_link = &m_heaps.next;
|
||||
while (next_heap) {
|
||||
if (new_heap->heap.memory() < next_heap->heap.memory())
|
||||
break;
|
||||
next_heap_link = &next_heap->next;
|
||||
next_heap = next_heap->next;
|
||||
}
|
||||
new_heap->next = *next_heap_link;
|
||||
*next_heap_link = new_heap;
|
||||
return new_heap->heap;
|
||||
}
|
||||
|
||||
bool contains(const void* ptr) const
|
||||
{
|
||||
for (auto* subheap = &m_heaps; subheap; subheap = subheap->next) {
|
||||
if (subheap->heap.contains(ptr))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
size_t total_chunks() const
|
||||
{
|
||||
size_t total = 0;
|
||||
for (auto* subheap = &m_heaps; subheap; subheap = subheap->next)
|
||||
total += subheap->heap.total_chunks();
|
||||
return total;
|
||||
}
|
||||
size_t total_bytes() const { return total_chunks() * CHUNK_SIZE; }
|
||||
size_t free_chunks() const
|
||||
{
|
||||
size_t total = 0;
|
||||
for (auto* subheap = &m_heaps; subheap; subheap = subheap->next)
|
||||
total += subheap->heap.free_chunks();
|
||||
return total;
|
||||
}
|
||||
size_t free_bytes() const { return free_chunks() * CHUNK_SIZE; }
|
||||
size_t allocated_chunks() const
|
||||
{
|
||||
size_t total = 0;
|
||||
for (auto* subheap = &m_heaps; subheap; subheap = subheap->next)
|
||||
total += subheap->heap.allocated_chunks();
|
||||
return total;
|
||||
}
|
||||
size_t allocated_bytes() const { return allocated_chunks() * CHUNK_SIZE; }
|
||||
|
||||
private:
|
||||
SubHeap m_heaps;
|
||||
ExpandHeap m_expand;
|
||||
};
|
||||
|
||||
}
|
|
@ -30,10 +30,12 @@
|
|||
*/
|
||||
|
||||
#include <AK/Assertions.h>
|
||||
#include <AK/Bitmap.h>
|
||||
#include <AK/NonnullOwnPtrVector.h>
|
||||
#include <AK/Optional.h>
|
||||
#include <AK/StringView.h>
|
||||
#include <AK/Types.h>
|
||||
#include <Kernel/Arch/i386/CPU.h>
|
||||
#include <Kernel/Heap/Heap.h>
|
||||
#include <Kernel/Heap/kmalloc.h>
|
||||
#include <Kernel/KSyms.h>
|
||||
#include <Kernel/Process.h>
|
||||
|
@ -44,30 +46,118 @@
|
|||
|
||||
#define SANITIZE_KMALLOC
|
||||
|
||||
struct AllocationHeader {
|
||||
size_t allocation_size_in_chunks;
|
||||
u8 data[0];
|
||||
#define CHUNK_SIZE 32
|
||||
#define POOL_SIZE (2 * MiB)
|
||||
#define ETERNAL_RANGE_SIZE (2 * MiB)
|
||||
|
||||
struct KmallocGlobalHeap {
|
||||
struct ExpandGlobalHeap {
|
||||
KmallocGlobalHeap& m_global_heap;
|
||||
|
||||
ExpandGlobalHeap(KmallocGlobalHeap& global_heap)
|
||||
: m_global_heap(global_heap)
|
||||
{
|
||||
}
|
||||
|
||||
bool add_memory(size_t allocation_request)
|
||||
{
|
||||
if (!MemoryManager::is_initialized()) {
|
||||
klog() << "kmalloc(): Cannot expand heap before MM is initialized!";
|
||||
return false;
|
||||
}
|
||||
// At this point we have very little memory left. Any attempt to
|
||||
// kmalloc() could fail, so use our backup memory first, so we
|
||||
// can't really reliably allocate even a new region of memory.
|
||||
// This is why we keep a backup region, which we can
|
||||
auto region = move(m_global_heap.m_backup_memory);
|
||||
if (!region) {
|
||||
klog() << "kmalloc(): Cannot expand heap: no backup memory";
|
||||
return false;
|
||||
}
|
||||
|
||||
klog() << "kmalloc(): Adding memory to heap at " << region->vaddr() << ", bytes: " << region->size();
|
||||
|
||||
auto& subheap = m_global_heap.m_heap.add_subheap(region->vaddr().as_ptr(), region->size());
|
||||
m_global_heap.m_subheap_memory.append(region.release_nonnull());
|
||||
|
||||
// Since we pulled in our backup heap, make sure we allocate another
|
||||
// backup heap before returning. Otherwise we potentially lose
|
||||
// the ability to expand the heap next time we get called.
|
||||
ScopeGuard guard([&]() {
|
||||
m_global_heap.allocate_backup_memory();
|
||||
});
|
||||
|
||||
// Now that we added our backup memory, check if the backup heap
|
||||
// was big enough to likely satisfy the request
|
||||
if (subheap.free_bytes() < allocation_request) {
|
||||
// Looks like we probably need more
|
||||
size_t memory_size = max(decltype(m_global_heap.m_heap)::calculate_memory_for_bytes(allocation_request), (size_t)(1 * MiB));
|
||||
region = MM.allocate_kernel_region(memory_size, "kmalloc subheap", Region::Access::Read | Region::Access::Write);
|
||||
if (region) {
|
||||
klog() << "kmalloc(): Adding even more memory to heap at " << region->vaddr() << ", bytes: " << region->size();
|
||||
|
||||
m_global_heap.m_heap.add_subheap(region->vaddr().as_ptr(), region->size());
|
||||
m_global_heap.m_subheap_memory.append(region.release_nonnull());
|
||||
} else {
|
||||
klog() << "kmalloc(): Could not expand heap to satisfy allocation of " << allocation_request << " bytes";
|
||||
return false;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool remove_memory(void* memory)
|
||||
{
|
||||
// This is actually relatively unlikely to happen, because it requires that all
|
||||
// allocated memory in a subheap to be freed. Only then the subheap can be removed...
|
||||
for (size_t i = 0; i < m_global_heap.m_subheap_memory.size(); i++) {
|
||||
if (m_global_heap.m_subheap_memory[i].vaddr().as_ptr() == memory) {
|
||||
auto region = m_global_heap.m_subheap_memory.take(i);
|
||||
klog() << "kmalloc(): Removing memory from heap at " << region->vaddr() << ", bytes: " << region->size();
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
klog() << "kmalloc(): Cannot remove memory from heap: " << VirtualAddress(memory);
|
||||
return false;
|
||||
}
|
||||
};
|
||||
typedef ExpandableHeap<CHUNK_SIZE, KMALLOC_SCRUB_BYTE, KFREE_SCRUB_BYTE, ExpandGlobalHeap> HeapType;
|
||||
|
||||
HeapType m_heap;
|
||||
NonnullOwnPtrVector<Region> m_subheap_memory;
|
||||
OwnPtr<Region> m_backup_memory;
|
||||
|
||||
KmallocGlobalHeap(u8* memory, size_t memory_size)
|
||||
: m_heap(memory, memory_size, ExpandGlobalHeap(*this))
|
||||
{
|
||||
}
|
||||
void allocate_backup_memory()
|
||||
{
|
||||
if (m_backup_memory)
|
||||
return;
|
||||
m_backup_memory = MM.allocate_kernel_region(1 * MiB, "kmalloc subheap", Region::Access::Read | Region::Access::Write);
|
||||
}
|
||||
|
||||
size_t backup_memory_bytes() const
|
||||
{
|
||||
return m_backup_memory ? m_backup_memory->size() : 0;
|
||||
}
|
||||
};
|
||||
|
||||
#define CHUNK_SIZE 32
|
||||
#define POOL_SIZE (3 * MiB)
|
||||
#define ETERNAL_RANGE_SIZE (2 * MiB)
|
||||
static KmallocGlobalHeap* g_kmalloc_global;
|
||||
|
||||
// We need to make sure to not stomp on global variables or other parts
|
||||
// of the kernel image!
|
||||
extern u32 end_of_kernel_image;
|
||||
u8* const kmalloc_start = (u8*)PAGE_ROUND_UP(&end_of_kernel_image);
|
||||
u8* const kmalloc_end = kmalloc_start + (ETERNAL_RANGE_SIZE + POOL_SIZE);
|
||||
#define ETERNAL_BASE kmalloc_start
|
||||
u8* const kmalloc_end = kmalloc_start + (ETERNAL_RANGE_SIZE + POOL_SIZE) + sizeof(KmallocGlobalHeap);
|
||||
#define ETERNAL_BASE (kmalloc_start + sizeof(KmallocGlobalHeap))
|
||||
#define KMALLOC_BASE (ETERNAL_BASE + ETERNAL_RANGE_SIZE)
|
||||
|
||||
static u8 alloc_map[POOL_SIZE / CHUNK_SIZE / 8];
|
||||
|
||||
size_t g_kmalloc_bytes_allocated = 0;
|
||||
size_t g_kmalloc_bytes_free = POOL_SIZE;
|
||||
size_t g_kmalloc_bytes_eternal = 0;
|
||||
size_t g_kmalloc_call_count;
|
||||
size_t g_kfree_call_count;
|
||||
static size_t g_kmalloc_bytes_eternal = 0;
|
||||
static size_t g_kmalloc_call_count;
|
||||
static size_t g_kfree_call_count;
|
||||
bool g_dump_kmalloc_stacks;
|
||||
|
||||
static u8* s_next_eternal_ptr;
|
||||
|
@ -75,15 +165,17 @@ static u8* s_end_of_eternal_range;
|
|||
|
||||
static RecursiveSpinLock s_lock; // needs to be recursive because of dump_backtrace()
|
||||
|
||||
void kmalloc_enable_expand()
|
||||
{
|
||||
g_kmalloc_global->allocate_backup_memory();
|
||||
}
|
||||
|
||||
void kmalloc_init()
|
||||
{
|
||||
memset(&alloc_map, 0, sizeof(alloc_map));
|
||||
memset((void*)KMALLOC_BASE, 0, POOL_SIZE);
|
||||
s_lock.initialize();
|
||||
g_kmalloc_global = new (kmalloc_start) KmallocGlobalHeap(KMALLOC_BASE, POOL_SIZE); // Place heap at kmalloc_start
|
||||
|
||||
g_kmalloc_bytes_eternal = 0;
|
||||
g_kmalloc_bytes_allocated = 0;
|
||||
g_kmalloc_bytes_free = POOL_SIZE;
|
||||
s_lock.initialize();
|
||||
|
||||
s_next_eternal_ptr = (u8*)ETERNAL_BASE;
|
||||
s_end_of_eternal_range = s_next_eternal_ptr + ETERNAL_RANGE_SIZE;
|
||||
|
@ -99,45 +191,6 @@ void* kmalloc_eternal(size_t size)
|
|||
return ptr;
|
||||
}
|
||||
|
||||
void* kmalloc_aligned(size_t size, size_t alignment)
|
||||
{
|
||||
void* ptr = kmalloc(size + alignment + sizeof(void*));
|
||||
size_t max_addr = (size_t)ptr + alignment;
|
||||
void* aligned_ptr = (void*)(max_addr - (max_addr % alignment));
|
||||
((void**)aligned_ptr)[-1] = ptr;
|
||||
return aligned_ptr;
|
||||
}
|
||||
|
||||
void kfree_aligned(void* ptr)
|
||||
{
|
||||
kfree(((void**)ptr)[-1]);
|
||||
}
|
||||
|
||||
void* kmalloc_page_aligned(size_t size)
|
||||
{
|
||||
void* ptr = kmalloc_aligned(size, PAGE_SIZE);
|
||||
size_t d = (size_t)ptr;
|
||||
ASSERT((d & PAGE_MASK) == d);
|
||||
return ptr;
|
||||
}
|
||||
|
||||
inline void* kmalloc_allocate(size_t first_chunk, size_t chunks_needed)
|
||||
{
|
||||
auto* a = (AllocationHeader*)(KMALLOC_BASE + (first_chunk * CHUNK_SIZE));
|
||||
u8* ptr = a->data;
|
||||
a->allocation_size_in_chunks = chunks_needed;
|
||||
|
||||
Bitmap bitmap_wrapper = Bitmap::wrap(alloc_map, POOL_SIZE / CHUNK_SIZE);
|
||||
bitmap_wrapper.set_range(first_chunk, chunks_needed, true);
|
||||
|
||||
g_kmalloc_bytes_allocated += a->allocation_size_in_chunks * CHUNK_SIZE;
|
||||
g_kmalloc_bytes_free -= a->allocation_size_in_chunks * CHUNK_SIZE;
|
||||
#ifdef SANITIZE_KMALLOC
|
||||
memset(ptr, KMALLOC_SCRUB_BYTE, (a->allocation_size_in_chunks * CHUNK_SIZE) - sizeof(AllocationHeader));
|
||||
#endif
|
||||
return ptr;
|
||||
}
|
||||
|
||||
void* kmalloc_impl(size_t size)
|
||||
{
|
||||
ScopedSpinLock lock(s_lock);
|
||||
|
@ -148,53 +201,14 @@ void* kmalloc_impl(size_t size)
|
|||
Kernel::dump_backtrace();
|
||||
}
|
||||
|
||||
// We need space for the AllocationHeader at the head of the block.
|
||||
size_t real_size = size + sizeof(AllocationHeader);
|
||||
|
||||
if (g_kmalloc_bytes_free < real_size) {
|
||||
Kernel::dump_backtrace();
|
||||
klog() << "kmalloc(): PANIC! Out of memory\nsum_free=" << g_kmalloc_bytes_free << ", real_size=" << real_size;
|
||||
Processor::halt();
|
||||
}
|
||||
|
||||
size_t chunks_needed = (real_size + CHUNK_SIZE - 1) / CHUNK_SIZE;
|
||||
|
||||
Bitmap bitmap_wrapper = Bitmap::wrap(alloc_map, POOL_SIZE / CHUNK_SIZE);
|
||||
Optional<size_t> first_chunk;
|
||||
|
||||
// Choose the right politic for allocation.
|
||||
constexpr u32 best_fit_threshold = 128;
|
||||
if (chunks_needed < best_fit_threshold) {
|
||||
first_chunk = bitmap_wrapper.find_first_fit(chunks_needed);
|
||||
} else {
|
||||
first_chunk = bitmap_wrapper.find_best_fit(chunks_needed);
|
||||
}
|
||||
|
||||
if (!first_chunk.has_value()) {
|
||||
void* ptr = g_kmalloc_global->m_heap.allocate(size);
|
||||
if (!ptr) {
|
||||
klog() << "kmalloc(): PANIC! Out of memory (no suitable block for size " << size << ")";
|
||||
Kernel::dump_backtrace();
|
||||
Processor::halt();
|
||||
}
|
||||
|
||||
return kmalloc_allocate(first_chunk.value(), chunks_needed);
|
||||
}
|
||||
|
||||
static inline void kfree_impl(void* ptr)
|
||||
{
|
||||
++g_kfree_call_count;
|
||||
|
||||
auto* a = (AllocationHeader*)((((u8*)ptr) - sizeof(AllocationHeader)));
|
||||
FlatPtr start = ((FlatPtr)a - (FlatPtr)KMALLOC_BASE) / CHUNK_SIZE;
|
||||
|
||||
Bitmap bitmap_wrapper = Bitmap::wrap(alloc_map, POOL_SIZE / CHUNK_SIZE);
|
||||
bitmap_wrapper.set_range(start, a->allocation_size_in_chunks, false);
|
||||
|
||||
g_kmalloc_bytes_allocated -= a->allocation_size_in_chunks * CHUNK_SIZE;
|
||||
g_kmalloc_bytes_free += a->allocation_size_in_chunks * CHUNK_SIZE;
|
||||
|
||||
#ifdef SANITIZE_KMALLOC
|
||||
memset(a, KFREE_SCRUB_BYTE, a->allocation_size_in_chunks * CHUNK_SIZE);
|
||||
#endif
|
||||
return ptr;
|
||||
}
|
||||
|
||||
void kfree(void* ptr)
|
||||
|
@ -203,26 +217,15 @@ void kfree(void* ptr)
|
|||
return;
|
||||
|
||||
ScopedSpinLock lock(s_lock);
|
||||
kfree_impl(ptr);
|
||||
++g_kfree_call_count;
|
||||
|
||||
g_kmalloc_global->m_heap.deallocate(ptr);
|
||||
}
|
||||
|
||||
void* krealloc(void* ptr, size_t new_size)
|
||||
{
|
||||
if (!ptr)
|
||||
return kmalloc(new_size);
|
||||
|
||||
ScopedSpinLock lock(s_lock);
|
||||
|
||||
auto* a = (AllocationHeader*)((((u8*)ptr) - sizeof(AllocationHeader)));
|
||||
size_t old_size = a->allocation_size_in_chunks * CHUNK_SIZE;
|
||||
|
||||
if (old_size == new_size)
|
||||
return ptr;
|
||||
|
||||
auto* new_ptr = kmalloc(new_size);
|
||||
memcpy(new_ptr, ptr, min(old_size, new_size));
|
||||
kfree_impl(ptr);
|
||||
return new_ptr;
|
||||
return g_kmalloc_global->m_heap.reallocate(ptr, new_size);
|
||||
}
|
||||
|
||||
void* operator new(size_t size)
|
||||
|
@ -234,3 +237,13 @@ void* operator new[](size_t size)
|
|||
{
|
||||
return kmalloc(size);
|
||||
}
|
||||
|
||||
void get_kmalloc_stats(kmalloc_stats& stats)
|
||||
{
|
||||
ScopedSpinLock lock(s_lock);
|
||||
stats.bytes_allocated = g_kmalloc_global->m_heap.allocated_bytes();
|
||||
stats.bytes_free = g_kmalloc_global->m_heap.free_bytes() + g_kmalloc_global->backup_memory_bytes();
|
||||
stats.bytes_eternal = g_kmalloc_bytes_eternal;
|
||||
stats.kmalloc_call_count = g_kmalloc_call_count;
|
||||
stats.kfree_call_count = g_kfree_call_count;
|
||||
}
|
||||
|
|
|
@ -36,17 +36,19 @@
|
|||
void kmalloc_init();
|
||||
[[gnu::malloc, gnu::returns_nonnull, gnu::alloc_size(1)]] void* kmalloc_impl(size_t);
|
||||
[[gnu::malloc, gnu::returns_nonnull, gnu::alloc_size(1)]] void* kmalloc_eternal(size_t);
|
||||
[[gnu::malloc, gnu::returns_nonnull, gnu::alloc_size(1)]] void* kmalloc_page_aligned(size_t);
|
||||
[[gnu::malloc, gnu::returns_nonnull, gnu::alloc_size(1)]] void* kmalloc_aligned(size_t, size_t alignment);
|
||||
|
||||
void* krealloc(void*, size_t);
|
||||
void kfree(void*);
|
||||
void kfree_aligned(void*);
|
||||
|
||||
extern size_t g_kmalloc_bytes_allocated;
|
||||
extern size_t g_kmalloc_bytes_free;
|
||||
extern size_t g_kmalloc_bytes_eternal;
|
||||
extern size_t g_kmalloc_call_count;
|
||||
extern size_t g_kfree_call_count;
|
||||
struct kmalloc_stats {
|
||||
size_t bytes_allocated;
|
||||
size_t bytes_free;
|
||||
size_t bytes_eternal;
|
||||
size_t kmalloc_call_count;
|
||||
size_t kfree_call_count;
|
||||
};
|
||||
void get_kmalloc_stats(kmalloc_stats&);
|
||||
|
||||
extern bool g_dump_kmalloc_stacks;
|
||||
|
||||
inline void* operator new(size_t, void* p) { return p; }
|
||||
|
@ -62,5 +64,24 @@ inline void* operator new[](size_t, void* p) { return p; }
|
|||
return kmalloc_impl(size);
|
||||
}
|
||||
|
||||
template<size_t ALIGNMENT>
|
||||
[[gnu::malloc, gnu::returns_nonnull, gnu::alloc_size(1)]] inline void* kmalloc_aligned(size_t size)
|
||||
{
|
||||
static_assert(ALIGNMENT > 1);
|
||||
static_assert(ALIGNMENT < 255);
|
||||
void* ptr = kmalloc(size + ALIGNMENT + sizeof(u8));
|
||||
size_t max_addr = (size_t)ptr + ALIGNMENT;
|
||||
void* aligned_ptr = (void*)(max_addr - (max_addr % ALIGNMENT));
|
||||
((u8*)aligned_ptr)[-1] = (u8)((u8*)aligned_ptr - (u8*)ptr);
|
||||
return aligned_ptr;
|
||||
}
|
||||
|
||||
inline void kfree_aligned(void* ptr)
|
||||
{
|
||||
kfree((u8*)ptr - ((u8*)ptr)[-1]);
|
||||
}
|
||||
|
||||
void kmalloc_enable_expand();
|
||||
|
||||
extern u8* const kmalloc_start;
|
||||
extern u8* const kmalloc_end;
|
||||
|
|
|
@ -60,7 +60,7 @@ Thread::Thread(NonnullRefPtr<Process> process)
|
|||
dbg() << "Created new thread " << m_process->name() << "(" << m_process->pid().value() << ":" << m_tid.value() << ")";
|
||||
#endif
|
||||
set_default_signal_dispositions();
|
||||
m_fpu_state = (FPUState*)kmalloc_aligned(sizeof(FPUState), 16);
|
||||
m_fpu_state = (FPUState*)kmalloc_aligned<16>(sizeof(FPUState));
|
||||
reset_fpu_state();
|
||||
memset(&m_tss, 0, sizeof(m_tss));
|
||||
m_tss.iomapbase = sizeof(TSS32);
|
||||
|
|
|
@ -65,6 +65,11 @@ MemoryManager& MM
|
|||
return *s_the;
|
||||
}
|
||||
|
||||
bool MemoryManager::is_initialized()
|
||||
{
|
||||
return s_the != nullptr;
|
||||
}
|
||||
|
||||
MemoryManager::MemoryManager()
|
||||
{
|
||||
ScopedSpinLock lock(s_mm_lock);
|
||||
|
@ -282,8 +287,10 @@ void MemoryManager::initialize(u32 cpu)
|
|||
#endif
|
||||
Processor::current().set_mm_data(*mm_data);
|
||||
|
||||
if (cpu == 0)
|
||||
if (cpu == 0) {
|
||||
s_the = new MemoryManager;
|
||||
kmalloc_enable_expand();
|
||||
}
|
||||
}
|
||||
|
||||
Region* MemoryManager::kernel_region_from_vaddr(VirtualAddress vaddr)
|
||||
|
|
|
@ -86,6 +86,7 @@ class MemoryManager {
|
|||
|
||||
public:
|
||||
static MemoryManager& the();
|
||||
static bool is_initialized();
|
||||
|
||||
static void initialize(u32 cpu);
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue