Consider the old pattern for creating a Core::Object parent and child:
auto parent = Core::Object::construct(...);
auto child = Core::Object::construct(..., parent);
The above was an artifact of the pre-reference-counting Object era.
Now that objects have less esoteric lifetime management, we can replace
the old pattern with something more expressive:
auto parent = Core::Object::construct(...);
auto child = parent->add<Core::Object>(...);
This reads a lot more naturally, and it also means we can get rid of
all the parent pointer arguments to Core::Object subclass constructors.
This is just to have a pleasant way to print the current time for now:
dbg() << Core::DateTime::now();
Or if you want it as a string:
Core::DateTime::now().to_string();
This was only used by HashTable::dump() which I used when doing the
first HashTable implementation. Removing this allows us to also remove
most includes of <AK/kstdio.h>.
I've been wanting to do this for a long time. It's time we start being
consistent about how this stuff works.
The new convention is:
- "LibFoo" is a userspace library that provides the "Foo" namespace.
That's it :^) This was pretty tedious to convert and I didn't even
start on LibGUI yet. But it's coming up next.
Unparented GActions are still parented to the application like before,
making them globally available.
This makes it possible to have actions that work whenever a specific
window is active, no matter which widget is currently focused. :^)
This is a complete reimplementation of CArgsParser with a different API.
Now, CArgsParser properly supports and distinguishes between:
* Positional arguments (required or not)
* Options
Options can be short and/or long.
The API allows you to add custom option and argument types. A few types are
pre-implemented for convenience:
* Boolean options (take no value)
* String and integer options (take a required value)
* String and integer arguments
* Vector-of-string arguments
This commit doesn't include changes for all the users of CArgsParser (see next
commit for that).
The "stay_within" parameter to CObject::dispatch_event() optionally
specifies a node in the CObject parent chain where event dispatch
should stop bubbling upwards.
Since event dispatch is done recursively, this was not working right,
as we would simply return from the innermost dispatch loop, leaving
the event un-accepted, which meant that the penultimately inner
dispatch loop would pick up the event and keep bubbling it anyway.
This made it possible for events to jump across window boundaries
within an application, in cases where one window was a CObject ancestor
of another window. This is typically the case with dialog windows.
Fix#1078.
A process has one of three veil states:
- None: unveil() has never been called.
- Dropped: unveil() has been called, and can be called again.
- Locked: unveil() has been called, and cannot be called again.
As suggested by Joshua, this commit adds the 2-clause BSD license as a
comment block to the top of every source file.
For the first pass, I've just added myself for simplicity. I encourage
everyone to add themselves as copyright holders of any file they've
added or modified in some significant way. If I've added myself in
error somewhere, feel free to replace it with the appropriate copyright
holder instead.
Going forward, all new source files should include a license header.
It used to only read the data it could get without blocking. Andreas says this
was intentional, but it's counterintuitive and no code that uses read_all()
actually expects it to return only a part of the data. So change it to always
read data until an EOF (or an error) is received.
CArgsParser::parse_next_param did not properly ensure that, when
a param required a following argument, there were enough parameters left to
complete the parse. This meant that params_left could become negative,
avoiding parse_next_param's termination condition, and cause a segfault
when reading from argv with an out of bounds index.
This fixes the check to ensure that we do in fact have the right amount
of parameters and also adds an assertion to ensure that params_left does
not become negative.
Threads now have numeric priorities with a base priority in the 1-99
range.
Whenever a runnable thread is *not* scheduled, its effective priority
is incremented by 1. This is tracked in Thread::m_extra_priority.
The effective priority of a thread is m_priority + m_extra_priority.
When a runnable thread *is* scheduled, its m_extra_priority is reset to
zero and the effective priority returns to base.
This means that lower-priority threads will always eventually get
scheduled to run, once its effective priority becomes high enough to
exceed the base priority of threads "above" it.
The previous values for ThreadPriority (Low, Normal and High) are now
replaced as follows:
Low -> 10
Normal -> 30
High -> 50
In other words, it will take 20 ticks for a "Low" priority thread to
get to "Normal" effective priority, and another 20 to reach "High".
This is not perfect, and I've used some quite naive data structures,
but I think the mechanism will allow us to build various new and
interesting optimizations, and we can figure out better data structures
later on. :^)
This removes a bunch of JsonValue copying from the hot path in thread
statistics fetching.
Also pre-size the thread statistics vector since we know the final size
up front. :^)
LibCore timers now have a TimerShouldFireWhenNotVisible flag which is
set to "No" by default.
If "No", the timer will not be fired by the event loop if it's within
a CObject tree whose nearest GWindow ancestor is currently not visible
for timer purposes. (Specificially, this means that the window is
either minimized or fully occluded, and so does not want to fire timers
just to update the UI.)
This is another nice step towards a calm and serene operating system.
This is memory that's loaded from an inode (file) but not modified in
memory, so still identical to what's on disk. This kind of memory can
be freed and reloaded transparently from disk if needed.