This allows issuing asynchronous requests for devices and waiting
on the completion of the request. The requests can cascade into
multiple sub-requests.
Since IRQs may complete at any time, if the current process is no
longer the same that started the process, we need to swich the
paging context before accessing user buffers.
Change the PATA driver to use this model.
This allows issuing asynchronous requests for devices and waiting
on the completion of the request. The requests can cascade into
multiple sub-requests.
Since IRQs may complete at any time, if the current process is no
longer the same that started the process, we need to swich the
paging context before accessing user buffers.
Change the PATA driver to use this model.
Since the CPU already does almost all necessary validation steps
for us, we don't really need to attempt to do this. Doing it
ourselves doesn't really work very reliably, because we'd have to
account for other processors modifying virtual memory, and we'd
have to account for e.g. pages not being able to be allocated
due to insufficient resources.
So change the copy_to/from_user (and associated helper functions)
to use the new safe_memcpy, which will return whether it succeeded
or not. The only manual validation step needed (which the CPU
can't perform for us) is making sure the pointers provided by user
mode aren't pointing to kernel mappings.
To make it easier to read/write from/to either kernel or user mode
data add the UserOrKernelBuffer helper class, which will internally
either use copy_from/to_user or directly memcpy, or pass the data
through directly using a temporary buffer on the stack.
Last but not least we need to keep syscall params trivial as we
need to copy them from/to user mode using copy_from/to_user.
This was supposed to be the foundation for some kind of pre-kernel
environment, but nobody is working on it right now, so let's move
everything back into the kernel and remove all the confusion.
You can now mmap a file as private and writable, and the changes you
make will only be visible to you.
This works because internally a MAP_PRIVATE region is backed by a
unique PrivateInodeVMObject instead of using the globally shared
SharedInodeVMObject like we always did before. :^)
Fixes#1045.
As suggested by Joshua, this commit adds the 2-clause BSD license as a
comment block to the top of every source file.
For the first pass, I've just added myself for simplicity. I encourage
everyone to add themselves as copyright holders of any file they've
added or modified in some significant way. If I've added myself in
error somewhere, feel free to replace it with the appropriate copyright
holder instead.
Going forward, all new source files should include a license header.
Now that the SystemMonitor queries which open files can be read and written to,
having can_read()/can_write() unconditionally call ASSERT_NOT_REACHED() leads
to system crashes when inspecting the WindowServer.
Instead, just return true from can_read()/can_write() (indicating that the
read()/write() syscalls should not block) and return -EINVAL when trying to
actually read from or write to these devices.
This was a workaround to be able to build on case-insensitive file
systems where it might get confused about <string.h> vs <String.h>.
Let's just not support building that way, so String.h can have an
objectively nicer name. :^)
This implements a very basic VGA device using the information provided
to us by the bootloader in the multiboot header. This allows Serenity to
boot to the desktop on basically any halfway modern system.