DoubleBuffer is the internal buffer for things like TTY, FIFO, sockets,
etc. If you try to write more than the buffer can hold, it will now
do a short write instead of asserting.
This is likely to expose issues at higher levels, and we'll have to
deal with them as they are discovered.
Background: DoubleBuffer is a handy buffer class in the kernel that
allows you to keep writing to it from the "outside" while the "inside"
reads from it. It's used for things like LocalSocket and TTY's.
Internally, it has a read buffer and a write buffer, but the two will
swap places when the read buffer is exhausted (by reading from it.)
Before this patch, it was internally implemented as two Vector<u8>
that we would swap between when the reader side had exhausted the data
in the read buffer. Now instead we preallocate a large KBuffer (64KB*2)
on DoubleBuffer construction and use that throughout its lifetime.
This removes all the kmalloc heap traffic caused by DoubleBuffers :^)
As suggested by Joshua, this commit adds the 2-clause BSD license as a
comment block to the top of every source file.
For the first pass, I've just added myself for simplicity. I encourage
everyone to add themselves as copyright holders of any file they've
added or modified in some significant way. If I've added myself in
error somewhere, feel free to replace it with the appropriate copyright
holder instead.
Going forward, all new source files should include a license header.
This reverts commit 1cca5142af.
This appears to be causing intermittent triple-faults and I don't know
why yet, so I'll just revert it to keep the tree in decent shape.
Background: DoubleBuffer is a handy buffer class in the kernel that
allows you to keep writing to it from the "outside" while the "inside"
reads from it. It's used for things like LocalSocket and PTY's.
Internally, it has a read buffer and a write buffer, but the two will
swap places when the read buffer is exhausted (by reading from it.)
Before this patch, it was internally implemented as two Vector<u8>
that we would swap between when the reader side had exhausted the data
in the read buffer. Now instead we preallocate a large KBuffer (64KB*2)
on DoubleBuffer construction and use that throughout its lifetime.
This removes all the kmalloc heap traffic caused by DoubleBuffers :^)