Previously we had /bin/sh, which might be bash but is run in POSIX mode
on some systems, causing read -r to not work correctly and inserting
newlines when encountering literal "\n" in the source.
Fixes#5040.
There's no guarantee that the last executed command will have a zero
exit code, and so the shell exit code may or may not be zero, even if
all the tests pass.
Also changes the `test || echo fail && exit` to
`if not test { echo fail && exit }`, since that's nicer-looking.
This adds support for FUTEX_WAKE_OP, FUTEX_WAIT_BITSET, FUTEX_WAKE_BITSET,
FUTEX_REQUEUE, and FUTEX_CMP_REQUEUE, as well well as global and private
futex and absolute/relative timeouts against the appropriate clock. This
also changes the implementation so that kernel resources are only used when
a thread is blocked on a futex.
Global futexes are implemented as offsets in VMObjects, so that different
processes can share a futex against the same VMObject despite potentially
being mapped at different virtual addresses.
All users of this mechanism have been switched to anonymous files and
passing file descriptors with sendfd()/recvfd().
Shbufs got us where we are today, but it's time we say good-bye to them
and welcome a much more idiomatic replacement. :^)
I've reached out to all of these authors asking if they would like to
claim the bounty and no one did. Let's list them on the website anyway
since it's fun to read about them. :^)
These changes are arbitrarily divided into multiple commits to make it
easier to find potentially introduced bugs with git bisect.Everything:
The modifications in this commit were automatically made using the
following command:
find . -name '*.cpp' -exec sed -i -E 's/dbg\(\) << ("[^"{]*");/dbgln\(\1\);/' {} \;
This patch moves the user account password hashes from /etc/passwd,
where they were world-readable, to /etc/shadow, where only root can
access them.
The Core::Account class is extended to support both authentication
against, and modification of /etc/shadow.
The default password for "anon" as of this commit is "foo" :^)
We can now test a _very_ basic transaction via `do_debug_transfer()`.
This function merely attaches some TDs to the LSCTRL queue head
and points some input and output buffers. We then sense an interrupt
with USBSTS value of 1, meaning Interrupt On Completion
(of the transaction). At this point, the input buffer is filled with
some data.
The bash version takes around 15 seconds to run; that is way too slow.
This python3 version should take less than one second to run. :^)
Also, the script will now also check .py files and .txt CMake files.
When ProcFS could no longer allocate KBuffer objects to serve calls to
read, it would just return 0, indicating EOF. This then triggered
parsing errors because code assumed it read the file.
Because read isn't supposed to return ENOMEM, change ProcFS to populate
the file data upon file open or seek to the beginning. This also means
that calls to open can now return ENOMEM if needed. This allows the
caller to either be able to successfully open the file and read it, or
fail to open it in the first place.
Loader.so now just performs the initial self relocations and static
LibC initialisation before handing over to ELF::DynamicLinker::linker_main
to handle the rest of the process.
As a trade-off, ELF::DynamicLinker needs to be explicitly excluded from
Lagom unless we really want to try writing a cross platform dynamic loader
Now that we commit memory, we need a lot more physical memory. Physical
memory requirements can be reduced again once we have memory swapping,
which allows the swap area/file to be counted against memory that can
be committed.
This adds the ability for a Region to define volatile/nonvolatile
areas within mapped memory using madvise(). This also means that
memory purging takes into account all views of the PurgeableVMObject
and only purges memory that is not needed by all of them. When calling
madvise() to change an area to nonvolatile memory, return whether
memory from that area was purged. At that time also try to remap
all memory that is requested to be nonvolatile, and if insufficient
pages are available notify the caller of that fact.
Resources embedded by the embed_resource() function will now also expose
a SECTION_start and SECTION_size symbol so the embedded resource can be found
by an application without having to parse its own ELF image which is not
something applications can currently do from userspace.
* Add SERENITY_ARCH option to CMake for selecting the target toolchain
* Port all build scripts but continue to use i686
* Update GitHub Actions cache to include BuildIt.sh
The partitioning code was very outdated, and required a full refactor.
The new subsystem removes duplicated code and uses more AK containers.
The most important change is that all implementations of the
PartitionTable class conform to one interface, which made it possible
to remove unnecessary code in the EBRPartitionTable class.
Finding partitions is now done in the StorageManagement singleton,
instead of doing so in init.cpp.
Also, now we don't try to find partitions on demand - the kernel will
try to detect if a StorageDevice is partitioned, and if so, will check
what is the partition table, which could be MBR, GUID or EBR.
Then, it will create DiskPartitionMetadata object for each partition
that is available in the partition table. This object will be used
by the partition enumeration code to create a DiskPartition with the
correct minor number.
The DevFS along with DevPtsFS give a complete solution for populating
device nodes in /dev. The main purpose of DevFS is to eliminate the
need of device nodes generation when building the system.
Later on, DevFS will assist with exposing disk partition nodes.