Only booleans are supported at first. More types can be added easily.
Use this to add /proc/sys/wm_flash_flush which when enabled flashes pending
screen flush rects in yellow before they happen.
Okay, now ProcFS doesn't crash due to the crappy buffer size estimates
not really working out. This thing has dogshit performance and I will
fix that separately.
This is a lot better than having them in kmalloc memory. I'm gonna need
a way to keep track of which process owns which bitmap eventually,
maybe through some sort of resource keying system. We'll see.
The old approach only worked because of an overpermissive accident.
There's now a concept of supervisor physical pages that can be allocated.
They all sit in the low 4 MB of physical memory and are identity mapped,
shared between all processes, and only ring 0 can access them.
This container is really just there to keep a retain on the individual
PhysicalPages for each page table. A HashMap does the job with far greater
space efficiency.
mmap() will now map uncommitted pages that get allocated and zeroed upon the
first access. I also made /proc/PID/vm show number of "committed" bytes in
each region. This is so cool! :^)
- Process::exec() needs to restore the original paging scope when called
on a non-current process.
- Add missing InterruptDisabler guards around g_processes access.
- Only flush the TLB when modifying the active page tables.
This is really sweet! :^) The four instances of /bin/sh spawned at
startup now share their read-only text pages.
There are problems and limitations here, and plenty of room for
improvement. But it kinda works.
All right, we can now mmap() a file and it gets magically paged in from fs
in response to an NP page fault. This is really cool :^)
I need to refactor this to support sharing of read-only file-backed pages,
but it's cool to just have something working.
First of all, change sys$mmap to take a struct SC_mmap_params since our
sycsall calling convention can't handle more than 3 arguments.
This exposed a bug in Syscall::invoke() needing to use clobber lists.
It was a bit confusing to debug. :^)
sys$fork() now clones all writable regions with per-page COW bits.
The pages are then mapped read-only and we handle a PF by COWing the pages.
This is quite delightful. Obviously there's lots of work to do still,
and it needs better data structures, but the general concept works.
This turned out way better than the old code. ELF loading is now quite
straightforward, and we don't need the weird concept of subregions anymore.
Next step is to respect the is_writable flag.
This was the fix:
-process.m_page_directory[0] = m_kernel_page_directory[0];
-process.m_page_directory[1] = m_kernel_page_directory[1];
+process.m_page_directory->entries[0] = m_kernel_page_directory->entries[0];
+process.m_page_directory->entries[1] = m_kernel_page_directory->entries[1];
I spent a good two hours scratching my head, not being able to figure out why
user process page directories felt they had ownership of page tables in the
kernel page directory.
It was because I was copying the entire damn kernel page directory into
the process instead of only sharing the two first PDE's. Dang!
This is quite cool! The syscall entry point plumbs the register dump
down to sys$fork(), which uses it to set up the child process's TSS
in order to resume execution right after the int 0x80 fork() call. :^)
This works pretty well, although there is some problem with the kernel
alias mappings used to clone the parent process's regions. If I disable
the MM::release_page_directory() code, there's no problem. Probably there's
a premature freeing of a physical page somehow.
This is way better than walking the region lists. I suppose we could
even let the hardware trigger a page fault and handle that. That'll
be the next step in the evolution here I guess.
I added an RAII helper called OtherTaskPagingScope. While present,
it switches the kernel over to using another task's page directory.
This is perfect for e.g walking the stack in /proc/PID/stack.
I spent some time stuck on a problem where processes would clobber each
other's stacks. Took me a moment to figure out that their stacks
were allocated in the sub-4MB linear address range which is shared
between all processes. Oops!
This isn't finished but I'll commit as I go. We need to get to where context
switching only needs to change CR3 and everything's ready to go.
My basic idea is:
- The first 4 kB is off-limits. This catches null dereferences.
- Up to the 4 MB mark is identity-mapped and kernel-only.
- The rest is available to everyone!
While the first 4 MB is only available to the kernel, it's still mapped in
every process, for convenience when entering the kernel.
Sweet, now we can look at all the zones (physical memory) currently in play.
Building the procfs files with ksprintf and rickety buffer presizing feels
pretty shoddy but I'll fix it up eventually.
This shows some info about the MM. Right now it's just the zone count
and the number of free physical pages. Lots more can be added.
Also added "exit" to sh so we can nest shells and exit from them.
I also noticed that we were leaking all the physical pages, so fixed that.
This took me a couple hours. :^)
The ELF loading code now allocates a single region for the entire
file and creates virtual memory mappings for the sections as needed.
Very nice!
- Turn Keyboard into a CharacterDevice (85,1) at /dev/keyboard.
- Implement MM::unmapRegionsForTask() and MM::unmapRegion()
- Save SS correctly on interrupt.
- Add a simple Spawn syscall for launching another process.
- Move a bunch of IO syscall debug output behind DEBUG_IO.
- Have ASSERT do a "cli" immediately when failing.
This makes the output look proper every time.
- Implement a bunch of syscalls in LibC.
- Add a simple shell ("sh"). All it can do now is read a line
of text from /dev/keyboard and then try launching the specified
executable by calling spawn().
There are definitely bugs in here, but we're moving on forward.