This naming scheme matches Vector.
This also changes `take_last` to move the value it takes, and delete by
known pointer, avoiding a full lookup and potential copies.
Until now, it was possible to assign a RP<T const> or NNRP<T const>
to RP<T> or NNRP<T>. This meant that the constness of the T was lost.
We had a lot of code that relied on this sloppiness, and by the time
you see this commit, I hopefully found and fixed all of it. :^)
This stops us needing a lot of ugly `FlyString { ... }` wrappers. THis
is the behavior that `DeprecatedFlyString(DeprecatedString)` has so it
should be fine.
The patch also contains modifications on several classes, functions or
files that are related to the `JPGLoader`.
Renaming include:
- JPGLoader{.h, .cpp}
- JPGImageDecoderPlugin
- JPGLoadingContext
- JPG_DEBUG
- decode_jpg
- FuzzJPGLoader.cpp
- Few string literals or texts
Instead of rehashing on collisions, we use Robin Hood hashing: a simple
linear probe where we keep track of the distance between the bucket and
its ideal position. On insertion, we allow a new bucket to "steal" the
position of "rich" buckets (those near their ideal position) and move
them further down.
On removal, we shift buckets back up into the freed slot, decrementing
their distance while doing so.
This behavior automatically optimizes the number of required probes for
any value, and removes the need for periodic rehashing (except when
expanding the capacity).
This approximation tries to generate values within 0.1% of their actual
expected value. Microbenchmarks indicate that this iterative SIMD
version can be up to 60x faster than `AK::SIMD::exp`.
The parser is still very much a work-in-progress, but it can currently
parse most of the basic bits, the only *completely* unimplemented things
in the parser are:
- heredocs (io_here)
- alias expansion
- arithmetic expansion
There are a whole suite of bugs, and syntax highlighting is unreliable
at best.
For now, this is not attached anywhere, a future commit will enable it
for /bin/sh or a `Shell --posix` invocation.
This ensures constructors that take a span or an initializer_list
don't allocate when there's already enough inline storage.
(Previously these constructors always allocated)
This is done by providing Traits<ByteBuffer>::equals functions for
(Readonly)Bytes, as the base GenericTraits<T>::equals is unable to
convert the ByteBuffer to (Readonly)Bytes to then use Span::operator==
This allows us to check if a Vector<ByteBuffer> contains a
(Readonly)Bytes without having to making a copy of it into a ByteBuffer
first. The initial use of this is in LibWeb with CORS-preflight, where
we check the split contents of the Access-Control headers with
Fetch::Infrastructure::Request::method() and static StringViews
such as "*"sv.bytes().
It wouldn't make much sense on its own (as the Kernel only has errno
Errors), but it's an easy fix for not having to ifdef away every single
usage of `is_errno` in code that is shared between Userland and Kernel.
This code should not be used in the kernel - we should always propagate
proper errno codes in case we need to return those to userland so it
could decode it in a reasonable way.
This new method is meant to be used in both userspace and kernel code.
The idea is to allow printing of a verbose message and then returning an
errno code which is the proper mechanism for kernel code because we
should almost always assume that such error will be propagated back to
userspace in some way, so the userspace code could reasonably decode it.
For userspace code however, this new method is meant to be a simple
wrapper for Error::from_string_view, because for most invocations, it's
much more useful to have a verbose & literal error than a errno code, so
we simply ignore that errno code completely in such context.
For example, consider cases where we want to propagate errors only in
specific instances:
auto result = read_data(); // something like ErrorOr<ByteBuffer>
if (result.is_error() && result.error().code() != EINTR)
continue;
auto bytes = TRY(result);
The TRY invocation will currently copy the byte buffer when the
expression (in this case, just a local variable) is stored into
_temporary_result.
This patch binds the expression to a reference to prevent such copies.
In less trival invocations (such as TRY(some_function()), this will
incur only temporary lifetime extensions, i.e. no functional change.
As of now, there is a default copy constructor on Error. A future commit
will make this non-public to prevent implicit copies, so to prepare for
that, this adds a factory for the few cases where a copy is really
needed.