For an upcoming change to support interrupts in this driver, this class
has to inherit from IRQHandler. That in turn will make this class
virtual, which will then actually call the destructor of the class. We
don't want this to happen, thus we have to wrap the class in a
AK::NeverDestroyed.
These 2 classes currently contain much code that is x86(_64) specific.
Move them to the architecture specific directory. This also allows for a
simpler implementation for aarch64.
This register can be used to check whether the 4 different types of
interrupts are masked. A different variant can be used to set/clear
specific interrupt bits.
This requires us to add an Interrupts.h file in the Kernel/Arch
directory, which includes the architecture specific files.
The commit also stubs out the functions to be able to compile the
aarch64 Kernel.
Including signal.h would cause several ports to fail on build,
because it would end up including AK/Platform.h through these
mcontext headers. This is problematic because AK/Platform.h defines
several macros with very common names, such as `NAKED` (breaks radare2),
and `NO_SANITIZE_ADDRESS` and `ALWAYS_INLINE` (breaks ruby).
When disabling UBSAN, the compiler would complain that the constraints
of the inline assembly could not be met. By adding the alignas specifier
the compiler can now determine that the struct can be passed into a
register, and thus the constraints are met.
This adds some new buffers to the `FPUState` struct, which contains
enough space for the `xsave` instruction to run. This instruction writes
the upper part of the x86 SIMD registers (YMM0-15) to a seperate
256-byte area, as well as an "xsave header" describing the region.
If the underlying processor supports AVX, the `fxsave` instruction is no
longer used, as `xsave` itself implictly saves all of the SSE and x87
registers.
Co-authored-by: Leon Albrecht <leon.a@serenityos.org>
Instead of storing the current Processor into a core local register, we
currently just store it into a global, since we don't support SMP for
aarch64 anyway. This simplifies the initial implementation.
By putting the NOLOAD sections (.bss and .super_pages) at the end of the
ELF file, objcopy does not have to insert a lot of zeros to make sure
that the .ksyms section is at the right place in memory. Now the .ksyms
section comes before the two NOLOAD sections. This shrinks the
kernel8.img with 6MB, from 8.3M to 2.3M. :^)
The sections did end up in the ELF file, however they weren't
explicitely mentioned in the linker.ld script. In the future, we can add
the --orphan-handling=error flag to the linker options, which will
enforce that the sections used in the sources files also are mentioned
in the linker script.
Since kmalloc() now works, we can actually load the kernel symbol table!
This in turn allows us to call dump_backtrace(), and actually get a
useful backtrace in the aarch64 Kernel.
These functions are called by kmalloc, and since there is no support for
threading in the aarch64 build yet, we can simply remove the
VERIFY_NOT_REACHED().
The code in Spinlock.h has no architectural specific logic, thus can be
moved to the Arch directory. This contains no functional change.
Also add the Spinlock.cpp file for aarch64 which contains stubs for the
lock and unlock functions.
Previously the embedmap.sh script generated a warning, since there was
no section defined where the actual kernel.map could be stored. This is
necesarry for generating kernel backtraces.