This commit un-deprecates DeprecatedString, and repurposes it as a byte
string.
As the null state has already been removed, there are no other
particularly hairy blockers in repurposing this type as a byte string
(what it _really_ is).
This commit is auto-generated:
$ xs=$(ack -l \bDeprecatedString\b\|deprecated_string AK Userland \
Meta Ports Ladybird Tests Kernel)
$ perl -pie 's/\bDeprecatedString\b/ByteString/g;
s/deprecated_string/byte_string/g' $xs
$ clang-format --style=file -i \
$(git diff --name-only | grep \.cpp\|\.h)
$ gn format $(git ls-files '*.gn' '*.gni')
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
According to the spec, pointers to client data need to be dereferenced
immediately when adding calls such as `glDrawElements` or
`glArrayElement` to a display list. We were trying to support display
lists for these calls but since they only invoke _other_ calls that also
support display lists, we can simply defer the display list
functionality to them.
This fixes the rendering of the ClassiCube port by cflip.
Propagate errors in places that are already set up to handle them, like
WebGLRenderingContext and the Tubes demo, and convert other callers
to using MUST.
Each texture unit now has its own texture transformation matrix stack.
Introduce a new texture unit configuration that is synced when changed.
Because we're no longer passing a silly `Vector` when drawing each
primitive, this results in a slightly improved frames per second :^)
In OpenGL this is called the (base) internal format which is an
expectation expressed by the client for the minimum supported texel
storage format in the GPU for textures.
Since we store everything as RGBA in a `FloatVector4`, the only thing
we do in this patch is remember the expected internal format, and when
we write new texels we fixate the value for the alpha channel to 1 for
two formats that require it.
`PixelConverter` has learned how to transform pixels during transfer to
support this.
A GPU (driver) is now responsible for reading and writing pixels from
and to user data. The client (LibGL) is responsible for specifying how
the user data must be interpreted or written to.
This allows us to centralize all pixel format conversion in one class,
`LibSoftGPU::PixelConverter`. For both the input and output image, it
takes a specification containing the image dimensions, the pixel type
and the selection (basically a clipping rect), and converts the pixels
from the input image to the output image.
Effectively this means we now support almost all OpenGL 1.5 formats,
and all custom logic has disappeared from:
- `glDrawPixels`
- `glReadPixels`
- `glTexImage2D`
- `glTexSubImage2D`
The new logic is still unoptimized, but on my machine I experienced no
noticeable slowdown. :^)
Each of these strings would previously rely on StringView's char const*
constructor overload, which would call __builtin_strlen on the string.
Since we now have operator ""sv, we can replace these with much simpler
versions. This opens the door to being able to remove
StringView(char const*).
No functional changes.
Implement (anti)aliased point drawing and anti-aliased line drawing.
Supported through LibGL's `GL_POINTS`, `GL_LINES`, `GL_LINE_LOOP` and
`GL_LINE_STRIP`.
In order to support this, `LibSoftGPU`s rasterization logic was
reworked. Now, any primitive can be drawn by invoking `rasterize()`
which takes care of the quad loop and fragment testing logic. Three
callbacks need to be passed:
* `set_coverage_mask`: the primitive needs to provide initial coverage
mask information so fragments can be discarded early.
* `set_quad_depth`: fragments survived stencil testing, so depth values
need to be set so depth testing can take place.
* `set_quad_attributes`: fragments survived depth testing, so fragment
shading is going to take place. All attributes like color, tex coords
and fog depth need to be set so alpha testing and eventually,
fragment rasterization can take place.
As of this commit, there are four instantiations of this function:
* Triangle rasterization
* Points - aliased
* Points - anti-aliased
* Lines - anti-aliased
In order to standardize vertex processing for all primitive types,
things like vertex transformation, lighting and tex coord generation
are now taking place before clipping.
According to the spec, these calls should be identical to an invocation
of `glVertex2*`, which sets the W-coordinate to 1 by default.
This fixes the credits sequence rendering of Tux Racer.
Each LibGL test can now be tested against a reference QOI image.
Initially, these images can be generated by setting `SAVE_OUTPUT` to
`true`, which will save a bunch of QOI images to `/home/anon`.
At the moment we just check if we *can* render a simple triangle, we do
not yet actually test if the image is indeed the triangle we wanted.
This test also outputs the rendered image when GL_DEBUG is enabled to a
file called "picture.bmp" for manual verification.
Co-authored-by: sunverwerth <s.unverwerth@serenityos.org>