In order to move the WindowServer to userspace, I have to eliminate its
dependence on system call facilities. The communication channel with each
client needs to be message-based in both directions.
Only raw octal modes are supported right now.
This patch also changes mode_t from 32-bit to 16-bit to match the on-disk
type used by Ext2FS.
I also ran into EPERM being errno=0 which was confusing, so I inserted an
ESUCCESS in its place.
It's really only supported in Ext2FS since SynthFS doesn't really want you
mucking around with its files. This is pretty neat though :^)
I ran into some trouble with HashMap while working on this but opted to work
around it and leave that for a separate investigation.
Instead of clients painting whenever they feel like it, we now ask that they
paint in response to a paint message.
After finishing painting, clients notify the WindowServer about the rect(s)
they painted into and then flush eventually happens, etc.
This stuff leaves us with a lot of badly named things. Need to fix that.
This means we only have to do one fill_rect() per line and the whole process
ends up being ~10% faster than before.
Also added a read_tsc() syscall to give userspace access to the TSC.
To start painting, call:
gui$get_window_backing_store()
Then finish up with:
gui$release_window_backing_store()
Process will retain the underlying GraphicsBitmap behind the scenes.
This fixes racing between the WindowServer and GUI clients.
This patch also adds a WSWindowLocker that is exactly what it sounds like.
This patch adds most of the plumbing for working file deletion in Ext2FS.
Directory entries are removed and inode link counts updated.
We don't yet update the inode or block bitmaps, I will do that separately.
This is pretty cool. :^)
GraphicsBitmaps are now mapped into both the server and the client address
space (usually at different addresses but that doesn't matter.)
Added a GUI syscall for getting a window's backing store, and another one
for invalidating a window so that the server redraws it.
Userspace programs can now open /dev/gui_events and read a stream of GUI_Event
structs one at a time.
I was stuck on a stupid problem where we'd reenter Scheduler::yield() due to
having one of the has_data_available_for_reading() implementations using locks.
It walks all the live Inode objects and flushes pending metadata changes
wherever needed.
This could be optimized by keeping a separate list of dirty Inodes,
but let's not get ahead of ourselves.
This synchronous approach to inodes is silly, obviously. I need to rework
it so that the in-memory CoreInode object is the canonical inode, and then
we just need a sync() that flushes pending changes to disk.
The kernel now bills processes for time spent in kernelspace and userspace
separately. The accounting is forwarded to the parent process in reap().
This makes the "time" builtin in bash work.
First of all, change sys$mmap to take a struct SC_mmap_params since our
sycsall calling convention can't handle more than 3 arguments.
This exposed a bug in Syscall::invoke() needing to use clobber lists.
It was a bit confusing to debug. :^)
This is dirty but pretty cool! If we have a pending, unmasked signal for
a process that's blocked inside the kernel, we set up alternate stacks
for that process and unblock it to execute the signal handler.
A slightly different return trampoline is used here: since we need to
get back into the kernel, a dedicated syscall is used (sys$sigreturn.)
This restores the TSS contents of the process to the state it was in
while we were originally blocking in the kernel.
NOTE: There's currently only one "kernel resume TSS" so signal nesting
definitely won't work.