I started adding things to a Draw namespace, but it somehow felt really
wrong seeing Draw::Rect and Draw::Bitmap, etc. So instead, let's rename
the library to LibGfx. :^)
I've been wanting to do this for a long time. It's time we start being
consistent about how this stuff works.
The new convention is:
- "LibFoo" is a userspace library that provides the "Foo" namespace.
That's it :^) This was pretty tedious to convert and I didn't even
start on LibGUI yet. But it's coming up next.
Unparented GActions are still parented to the application like before,
making them globally available.
This makes it possible to have actions that work whenever a specific
window is active, no matter which widget is currently focused. :^)
As suggested by Joshua, this commit adds the 2-clause BSD license as a
comment block to the top of every source file.
For the first pass, I've just added myself for simplicity. I encourage
everyone to add themselves as copyright holders of any file they've
added or modified in some significant way. If I've added myself in
error somewhere, feel free to replace it with the appropriate copyright
holder instead.
Going forward, all new source files should include a license header.
LibCore timers now have a TimerShouldFireWhenNotVisible flag which is
set to "No" by default.
If "No", the timer will not be fired by the event loop if it's within
a CObject tree whose nearest GWindow ancestor is currently not visible
for timer purposes. (Specificially, this means that the window is
either minimized or fully occluded, and so does not want to fire timers
just to update the UI.)
This is another nice step towards a calm and serene operating system.
When filling in some missing part of a window (typically happens during
interactive window resize) we now use the ColorRole::Background from
the system theme palette instead of expecting the clients to send us
the same information when creating windows.
WindowServer now tracks whether windows are occluded (meaning that
they are completely covered by one or more opaque windows sitting above
them.) This state is communicated to the windows via WindowStateChanged
messages, which then allow GWindow to mark its backing store volatile.
This reduces the effective memory impact of windows that are not at all
visible to the user. Very cool. :^)
WindowServer will now send out a WindowStateChanged message to clients
when one of their windows is minimized.
This is then forwarded to the GWindow, which will try to mark its
underlying window backing store as volatile.
This allows the kernel to steal the memory used by minimized windows
in case it starts running low. Very cool! :^)
Color themes are loaded from .ini files in /res/themes/
The theme can be switched from the "Themes" section in the system menu.
The basic mechanism is that WindowServer broadcasts a SharedBuffer with
all of the color values of the current theme. Clients receive this with
the response to their initial WindowServer::Greet handshake.
When the theme is changed, WindowServer tells everyone by sending out
an UpdateSystemTheme message with a new SharedBuffer to use.
This does feel somewhat bloated somehow, but I'm sure we can iterate on
it over time and improve things.
To get one of the theme colors, use the Color(SystemColor) constructor:
painter.fill_rect(rect, SystemColor::HoverHighlight);
Some things don't work 100% right without a reboot. Specifically, when
constructing a GWidget, it will set its own background and foreground
colors based on the current SystemColor::Window and SystemColor::Text.
The widget is then stuck with these values, and they don't update on
system theme change, only on app restart.
All in all though, this is pretty cool. Merry Christmas! :^)
These fields are intended to carry the real meat of a drag operation,
and the "text" is just for what we show on screen (alongside the cursor
during the actual drag.)
The data field is just a String for now, but in the future we should
make it something more flexible.
We now take advantage of SharedBuffers being purgeable memory by
setting the volatile flag on window back buffers while not painting
into them.
This means that one of the two backing stores used by each window
is purgeable+volatile most of the time, allowing the kernel to purge
it to recover memory if needed.
Note that this is only relevant when double-buffering is turned on,
but since that is the default, this does affect most apps. :^)
Using int was a mistake. This patch changes String, StringImpl,
StringView and StringBuilder to use size_t instead of int for lengths.
Obviously a lot of code needs to change as a result of this.
This patch enables basic drag&drop between applications.
You initiate a drag by creating a GDragOperation object and calling
exec() on it. This creates a nested event loop in the calling program
that only returns once the drag operation has ended.
On the receiving side, you get a call to GWidget::drop_event() with
a GDropEvent containing information about the dropped data.
The only data passed right now is a piece of text that's also used
to visually indicate that a drag is happening (by showing the text in
a little box that follows the mouse cursor around.)
There are things to fix here, but we're off to a nice start. :^)
This patch introduces code generation for the WindowServer IPC with
its clients. The client/server endpoints are defined by the two .ipc
files in Servers/WindowServer/: WindowServer.ipc and WindowClient.ipc
It now becomes significantly easier to add features and capabilities
to WindowServer since you don't have to know nearly as much about all
the intricate paths that IPC messages take between LibGUI and WSWindow.
The new system also uses significantly less IPC bandwidth since we're
now doing packed serialization instead of passing fixed-sized structs
of ~600 bytes for each message.
Some repaint coalescing optimizations are lost in this conversion and
we'll need to look at how to implement those in the new world.
The old CoreIPC::Client::Connection and CoreIPC::Server::Connection
classes are removed by this patch and replaced by use of ConnectionNG,
which will be renamed eventually.
Goodbye, old WindowServer IPC. You served us well :^)
Instead of only doing a relayout in the widget you're invalidating,
we now do a recursive top-down relayout so everything gets updated.
This fixes invalid results after updating a preferred size in some
situations with nested layouts.
Added a window creation callback to GApplication that gets called
by GWindow which will reset any pending exit request in the
CEventLoop.
This is to prevent a bug which prevents your application from
starting up if you had a message box or other dialog before
showing your main application form. The bug was triggered by
there being no more visible windows which was triggering a
premature quit().
GEventLoop was just a dummy subclass of CEventLoop anyway. The only
thing it actually did was make sure a GWindowServerConnectionw was
instantiated. We now take care of that in GApplication instead.
CEventLoop is now non-virtual and a little less confusing. :^)
Since we're moving to a world of ref-counting, we can't have weird
behaviors like "windows delete themselves when you close them."
The "close app when there are no more windows" mechanism is moved
to GWindow::hide(). Now, we close the app when it has no more
windows on screen.
With this patch, CEvents no longer stop at the target object, but will
bubble up the ancestor chain as long as CEvent::is_accepted() is false.
To the set accepted flag, call CEvent::accept().
To clear the accepted flag, call CEvent::ignore().
Events start out in the accepted state, so if you want them to bubble
up, you have to call ignore() on them.
Using this mechanism, we now ignore non-tabbing keydown events in
GWidget, causing them to bubble up through the widget's ancestors. :^)
You can now call GWindow::set_fullscreen(bool) and it will go in or out
of fullscreen mode.
WindowServer will also remember the previous window rect when switching
to fullscreen, and restore it when switching back. :^)
Processes can now have an icon assigned, which is essentially a 16x16 RGBA32
bitmap exposed as a shared buffer ID.
You set the icon ID by calling set_process_icon(int) and the icon ID will be
exposed through /proc/all.
To make this work, I added a mechanism for making shared buffers globally
accessible. For safety reasons, each app seals the icon buffer before making
it global.
Right now the first call to GWindow::set_icon() is what determines the
process icon. We'll probably change this in the future. :^)
Now that we can set icons directly "by bitmap", there's no need for passing
around the icon paths anymore, so get rid of all the IPC and API related
to that. :^)
Now that we support more than 2 clients per shared buffer, we can use them
for window icons. I didn't do that previously since it would have made the
Taskbar process unable to access the icons.
This opens up some nice possibilities for programmatically generated icons.
This behavior and API was extremely counter-intuitive since our default
behavior was for applications to never exit after you close all of their
windows.
Now that we exit the event loop by default when the very last GWindow is
deleted, we don't have to worry about this.
This behavior is the new opt-out default. If you don't want your app to exit
when the last GWindow is destroyed, call this:
- void GApplication::set_quit_set_quit_when_last_window_deleted(bool)
Also renamed "windows()" to "reified_windows" in GWindow.cpp to reflect that
it only contains GWindows that have a server-side representation. :^)
Instead of LibGUI and WindowServer building their own copies of the drawing
and graphics code, let's it in a separate LibDraw library.
This avoids building the code twice, and will encourage better separation
of concerns. :^)
This allows us to seal a buffer *before* anyone else has access to it
(well, ok, the creating process still does, but you can't win them all).
It also means that a SharedBuffer can be shared with multiple clients:
all you need is to have access to it to share it on again.
This was a mistake, of course. Nested event loops don't need (or want)
independent server connections.
We initialize the connection early in GEventLoop for e.g. users that
want to get the size of a GDesktop before the connection has been
established.
Bug noticed by Andreas, introduced by me ;-)
As a consequence, move to use an explicit handshake() method rather than
calling virtuals from the constructor. This seemed to not bother
AClientConnection, but LibGUI crashes (rightfully) because of it.