We can now test a _very_ basic transaction via `do_debug_transfer()`.
This function merely attaches some TDs to the LSCTRL queue head
and points some input and output buffers. We then sense an interrupt
with USBSTS value of 1, meaning Interrupt On Completion
(of the transaction). At this point, the input buffer is filled with
some data.
We can now read/write to the two root ports exposed to the
UHCI controller, and detect when a device is plugged in or
out via a kernel process that constantly scans the port
for any changes. This is very basic, but is a bit of fun to see
the kernel detecting hardware on the fly :^)
The partitioning code was very outdated, and required a full refactor.
The new subsystem removes duplicated code and uses more AK containers.
The most important change is that all implementations of the
PartitionTable class conform to one interface, which made it possible
to remove unnecessary code in the EBRPartitionTable class.
Finding partitions is now done in the StorageManagement singleton,
instead of doing so in init.cpp.
Also, now we don't try to find partitions on demand - the kernel will
try to detect if a StorageDevice is partitioned, and if so, will check
what is the partition table, which could be MBR, GUID or EBR.
Then, it will create DiskPartitionMetadata object for each partition
that is available in the partition table. This object will be used
by the partition enumeration code to create a DiskPartition with the
correct minor number.
The StorageManagement class has 2 roles:
1. During boot, it should find all storage controllers in the machine,
and then determine what is the boot device.
2. Later on boot, it is a registrar of all storage controllers and
storage devices. Thus, it could be used to show information about these
devices when implemented.
This change allows the user to specify a boot driver other than /dev/hda
and if it's connected in the machine - it will boot.
This new subsystem is somewhat replacing the IDE disk code we had with a
new flexible design.
StorageDevice is a generic class that represent a generic storage
device. It is meant that specific storage hardware will override the
interface. StorageController is a generic class that represent
a storage controller that can be found in a machine.
The IDEController class governs two IDEChannels. An IDEChannel is
responsible to manage the master & slave devices of the channel,
therefore an IDEChannel is an IRQHandler.
This adds the ability to pass a pointer to kernel thread/process.
Also add the ability to use a closure as thread function, which
allows passing information to a kernel thread more easily.
Rather than waiting until we get the first mouse packet, enable the
absolute mode immediately. This avoids having to click first to be
able to move the mouse.
Rework the PS/2 keyboard and mouse drivers to use a common 8042
controller driver. Also, reset and reconfigure the 8042 controller
as they are not guaranteed to be in the state that we expect.
This enables the APIC timer on all CPUs, which means Scheduler::timer_tick
is now called on all CPUs independently. We still don't do anything on
the APs as it instantly crashes due to a number of other problems.
This makes it possible to start _everything_ under UserspaceEmulator, by
setting `init_args` to `--report-to-debug,/bin/SystemServer` and `init`
to `/bin/UserspaceEmulator`.
With the UE patches before this, we get to spawn WindowServer, and crash
because of FLD_RM32 (nothing tested past that) in graphical mode.
But we get a working shell in text mode :^) (and DHCPClient fails when
setting whatever settings it has received)
Similar to Process, we need to make Thread refcounted. This will solve
problems that will appear once we schedule threads on more than one
processor. This allows us to hold onto threads without necessarily
holding the scheduler lock for the entire duration.
MemoryManager cannot use the Singleton class because
MemoryManager::initialize is called before the global constructors
are run. That caused the Singleton to be re-initialized, causing
it to create another MemoryManager instance.
Fixes#3226
By having a separate list of constructors for the kernel heap
code, we can properly use constructors without re-running them
after the heap was already initialized. This solves some problems
where values were wiped out because they were overwritten by
running their constructors later in the initialization process.
I decided to play around with trying to run Serenity in VirtualBox.
It crashed WindowServer with a beautiful array of multi-color
flashing letters :^)
Skipping getting side-tracked seeing that it chose MBVGA in the
serial debug and trying to debug why it caused such a display,
I finally checked BXVGA.
While find_framebuffer_address checks for VBoxVGA, init_stage2 didn't.
Whoops!
It is possible to switch to VirtualConsoles 1 to 4 via the shortcut
ALT + [1-4]. Therefor the array of VirtualConsoles should be guaranteed
to be initialized.
Also add an constant for the maximum number of VirtualConsoles to
guarantee consistency.
We need to halt the BSP briefly until all APs are ready for the
first context switch, but we can't hold the same spinlock by all
of them while doing so. So, while the APs are waiting on each other
they need to release the scheduler lock, and then once signaled
re-acquire it. Should solve some timing dependent hangs or crashes,
most easily observed using qemu with kvm disabled.
We can now properly initialize all processors without
crashing by sending SMP IPI messages to synchronize memory
between processors.
We now initialize the APs once we have the scheduler running.
This is so that we can process IPI messages from the other
cores.
Also rework interrupt handling a bit so that it's more of a
1:1 mapping. We need to allocate non-sharable interrupts for
IPIs.
This also fixes the occasional hang/crash because all
CPUs now synchronize memory with each other.
- If rdseed is not available, fallback to rdrand.
- If rdrand is not available, block for entropy, or use insecure prng
depending on if user wants fast or good random.
Get rid of the weird old signature:
- int StringType::to_int(bool& ok) const
And replace it with sensible new signature:
- Optional<int> StringType::to_int() const
Together, they replace the old text_debug option.
* boot_mode should be either "graphical" (the default) or "text". We could
potentially support other values here in the future.
* init specifies which userspace process the kernel should spawn to bootstrap
userspace. By default, this is SystemServer, but you can specify e.g.
init=/bin/Shell to run system diagnostics.
This commit is one step forward for pluggable driver modules.
Instead of creating instances of network adapter classes, we let
their detect() methods to figure out if there are existing devices
to initialize.