This expands the reach of error propagation greatly throughout the
kernel. Sadly, it also exposes the fact that we're allocating (and
doing other fallible things) in constructors all over the place.
This patch doesn't attempt to address that of course. That's work for
our future selves.
As pointed out by 8infy, this mechanism is racy:
WRITER:
1. ++update1;
2. write_data();
3. ++update2;
READER:
1. do { auto saved = update1;
2. read_data();
3. } while (saved != update2);
The following sequence can lead to a bogus/partial read:
R1 R2 R3
W1 W2 W3
We close this race by incrementing the second update counter first:
WRITER:
1. ++update2;
2. write_data();
3. ++update1;
This patch adds a vDSO-like mechanism for exposing the current time as
an array of per-clock-source timestamps.
LibC's clock_gettime() calls sys$map_time_page() to map the kernel's
"time page" into the process address space (at a random address, ofc.)
This is only done on first call, and from then on the timestamps are
fetched from the time page.
This first patch only adds support for CLOCK_REALTIME, but eventually
we should be able to support all clock sources this way and get rid of
sys$clock_gettime() in the kernel entirely. :^)
Accesses are synchronized using two atomic integers that are incremented
at the start and finish of the kernel's time page update cycle.
These functions should return success when being called when profiling
has been requested from multiple callers because enabling/disabling the
timer is a no-op in that case and thus didn't fail.
This updates the profiling subsystem to use a separate timer to
trigger CPU sampling. This timer has a higher resolution (1000Hz)
and is independent from the scheduler. At a later time the
resolution could even be made configurable with an argument for
sys$profiling_enable() - but not today.
The fact that current_time can "fail" makes its use a bit awkward.
All callers in the Kernel are trusted besides syscalls, so assert
that they never get there, and make sure all current callers perform
validation of the clock_id with TimeManagement::is_valid_clock_id().
I have fuzzed this change locally for a bit to make sure I didn't
miss any obvious regression.
The variety of checks for Processor::id() == 0 could use some assistance
in the readability department. This change adds a new function to
represent this check, and replaces the comparison everywhere it's used.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
Previously all of the CommandLine parsing was spread out around the
Kernel. Instead move it all into the Kernel CommandLine class, and
expose a strongly typed API for querying the state of options.
I don't dare touch the multi-threading logic and locking mechanism, so it stays
timespec for now. However, this could and should be changed to AK::Time, and I
bet it will simplify the "increment_time_since_boot()" code.
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)
Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.
We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.
There's no real system here, I just added it to various functions
that I don't believe we ever want to call after initialization
has finished.
With these changes, we're able to unmap 60 KiB of kernel text
after init. :^)
This eliminates the window between calling Processor::current and
the member function where a thread could be moved to another
processor. This is generally not as big of a concern as with
Processor::current_thread, but also slightly more light weight.
These changes are arbitrarily divided into multiple commits to make it
easier to find potentially introduced bugs with git bisect.Everything:
The modifications in this commit were automatically made using the
following command:
find . -name '*.cpp' -exec sed -i -E 's/dbg\(\) << ("[^"{]*");/dbgln\(\1\);/' {} \;
The PIT is now also running at a rate of ~250 ticks/second, so rather
than assuming there are 1000 ticks/second we need to query the timer
being used for the actual frequency.
Fixes#4508
This implements a number of changes related to time:
* If a HPET is present, it is now used only as a system timer, unless
the Local APIC timer is used (in which case the HPET timer will not
trigger any interrupts at all).
* If a HPET is present, the current time can now be as accurate as the
chip can be, independently from the system timer. We now query the
HPET main counter for the current time in CPU #0's system timer
interrupt, and use that as a base line. If a high precision time is
queried, that base line is used in combination with quering the HPET
timer directly, which should give a much more accurate time stamp at
the expense of more overhead. For faster time stamps, the more coarse
value based on the last interrupt will be returned. This also means
that any missed interrupts should not cause the time to drift.
* The default system interrupt rate is reduced to about 250 per second.
* Fix calculation of Thread CPU usage by using the amount of ticks they
used rather than the number of times a context switch happened.
* Implement CLOCK_REALTIME_COARSE and CLOCK_MONOTONIC_COARSE and use it
for most cases where precise timestamps are not needed.
This allows us to use blocking timeouts with either monotonic or
real time for all blockers. Which means that clock_nanosleep()
now also supports CLOCK_REALTIME.
Also, switch alarm() to use CLOCK_REALTIME as per specification.
Use the TimerQueue to expire blocking operations, which is one less thing
the Scheduler needs to check on every iteration.
Also, add a BlockTimeout class that will automatically handle relative or
absolute timeouts as well as overriding timeouts (e.g. socket timeouts)
more consistently.
Also, rework the TimerQueue class to be able to fire events from
any processor, which requires Timer to be RefCounted. Also allow
creating id-less timers for use by blocking operations.
Most systems (Linux, OpenBSD) adjust 0.5 ms per second, or 0.5 us per
1 ms tick. That is, the clock is sped up or slowed down by at most
0.05%. This means adjusting the clock by 1 s takes 2000 s, and the
clock an be adjusted by at most 1.8 s per hour.
FreeBSD adjusts 5 ms per second if the remaining time adjustment is
>= 1 s (0.5%) , else it adjusts by 0.5 ms as well. This allows adjusting
by (almost) 18 s per hour.
Since Serenity OS can lose more than 22 s per hour (#3429), this
picks an adjustment rate up to 1% for now. This allows us to
adjust up to 36s per hour, which should be sufficient to adjust
the clock fast enough to keep up with how much time the clock
currently loses. Once we have a fancier NTP implementation that can
adjust tick rate in addition to offset, we can think about reducing
this.
adjtime is a bit old-school and most current POSIX-y OSs instead
implement adjtimex/ntp_adjtime, but a) we have to start somewhere
b) ntp_adjtime() is a fairly gnarly API. OpenBSD's adjfreq looks
like it might provide similar functionality with a nicer API. But
before worrying about all this, it's probably a good idea to get
to a place where the kernel APIs are (barely) good enough so that
we can write an ntp service, and once we have that we should write
a way to automatically evaluate how well it keeps the time adjusted,
and only then should we add improvements ot the adjustment mechanism.
* Change the register structures to use the volatile keyword explicitly
on the register values. This avoids accidentally omitting it as any
access will be guaranteed volatile.
* Don't assume we can read/write 64 bit value to the main counter and
the comparator. Not all HPET implementations may support this. So,
just use 32 bit words to access the registers. This ultimately works
around a bug in Bochs 2.6.11 that loses 32 bits of a 64 bit write to
a timer's comparator register (it internally writes one half and
clears the Tn_VAL_SET_CNF bit, and then because it's cleared it
fails to write the second half).
* Properly calculate the tick duration in calculate_ticks_in_nanoseconds
* As per specification, changing the frequency of one periodic timer
requires a restart of all periodic timers as it requires the main
counter to be reset.
This enables the APIC timer on all CPUs, which means Scheduler::timer_tick
is now called on all CPUs independently. We still don't do anything on
the APs as it instantly crashes due to a number of other problems.
Previously, it was kept as just a time_t and the sub-second
offset was inferred from the monotonic clock. This means that
sub-second time adjustments were ignored.
Now that `ntpquery -s` can pass in a time with sub-second
precision, it makes sense to keep time at that granularity
in the kernel.
After this, `ntpquery -s` immediately followed by `ntpquery` shows
an offset of 0.02s (that is, on the order of network roundtrip time)
instead of up to 0.75s previously.
MemoryManager cannot use the Singleton class because
MemoryManager::initialize is called before the global constructors
are run. That caused the Singleton to be re-initialized, causing
it to create another MemoryManager instance.
Fixes#3226
We don't need a wrapper Function object that just forwards the timer
callback to the scheduler tick function. It already has the same
signature, so we can just plug it in directly. :^)
Same with the clock updating function.