There were two issues:
1) the C+=R and C-=R operators expected arithmetic types to have .real()
2) the R+C, R-C, R*C and R/C operators applied the operation in wrong
order (did C+R, C-R, C*R and C/R instead). This wouldn't matter for
+ and * which are commutative, but is incorrect for - and /.
Let's replace this bool with an `enum class` in order to enhance
readability. This is done by repurposing `MappedFile`'s `OpenMode` into
a shared `enum` simply called `Mode`.
Previously, `URLParser` was constructing a new String for every
character of the URL's username and password. This change improves
performance by eliminating those unnecessary String allocations.
A URL with a 100,000 character password can now be parsed in ~30ms vs
~8 seconds previously on my machine.
Previously we assumed a default precision of 6, which made the printed
values quite odd in some cases.
This commit changes that default to print them with just enough
precision to produce the exact same float when roundtripped.
This commit adds some new tests that assert exact format outputs, which
have to be modified if we decide to change the default behaviour.
The slugify function is used to convert input into URL-friendly slugs.
It processes each character in the input, keeping ascii alpha characters
after lowercase and replacing non-alphanum characters with the glue
character or a space if multiple spaces are encountered consecutively.
The resulting string is trimmed of leading and trailing whitespace, and
any internal whitespace is replaced with the glue character.
It is currently used in LibMarkdown headings generation code.
Fixed the issue in StringUtils::convert_to_floating_point() where the
end pointer of the trimmed string was not being passed, causing the
function to consistently return 'None' when given strings with trailing
whitespaces.
There were 2 issues with the way we formatted floating point decimals:
if the part after the decimal point exceeded the max of an u64 we would
generate wildly incorrect decimals, and we applied no rounding.
With this new code, we emit decimals one by one and perform a simple
reverse string walk to round the number up if required.
This commit removes DeprecatedString's "null" state, and replaces all
its users with one of the following:
- A normal, empty DeprecatedString
- Optional<DeprecatedString>
Note that null states of DeprecatedFlyString/StringView/etc are *not*
affected by this commit. However, DeprecatedString::empty() is now
considered equal to a null StringView.
The mentioned functions used m_size / 8 instead of size_in_bytes()
(division with ceiling rounding mode), which resulted in an off-by-one
error such that the functions didn't search in the last not-fully-8-bits
byte.
Using size_in_bytes() instead of m_size / 8 fixes this.
When working with FixedMemoryStreams, and especially MappedFiles, you
may don't want to copy the underlying data when you read from the
stream. Pointing into that data is perfectly fine as long as you know
the lifetime of it is long enough.
This commit adds a couple of methods for reading either a single value,
or a span of them, in this way. As noted, for single values you sadly
get a raw pointer instead of a reference, but that's the only option
right now.
SipHash is highly HashDoS-resistent, initialized with a random seed at
startup (i.e. non-deterministic) and usable for security-critical use
cases with large enough parameters. We just use it because it's
reasonably secure with parameters 1-3 while having excellent properties
and not being significantly slower than before.
There are a bunch of tests that check for time_t handling 64-bit values
properly. This makes sense, but also obviously doesn't work when time_t
is 32-bit, and causes compile-time errors. Compile these tests out in
that case.
Since there's no straightforward way to check sizeof(time_t) inside the
proprocessor, only do this when glibc's __TIMESIZE is defined.
The main change is the simplification of the expression
`(10^precision * fraction) / 2^precision` to `5^precision * fraction`.
Those expressions overflow or not depends on the value of `precision`
and `fraction`. For the maximum value of `fraction`, the following table
shows for which value of `precision` overflow will occur.
Old New
u32 08 10
u64 15 20
u128 30 39
As of now `u64` type is used to calculate the result of the expression.
Meaning that before, only FixedPoints with `precision` less than 15
could be accurately rendered (for every value of fraction) in decimal.
Now, this limit gets increased to 20.
This refactor also fixes, broken decimal render for explicitly specified
precision width in format string, and broken hexadecimal render.
Because of the off-by-one error, the second bit of the fraction was
getting ignored in differentiating between fractions equal to 0.5 or
greater than 0.5. This resulted in numbers like 2.75 being considered
as having fraction equal to 0.5 and getting rounded incorrectly (to 2).
There was a small mishmash of argument order, as seen on the table:
| Traits<T>::equals(U, T) | Traits<T>::equals(T, U)
============= | ======================= | =======================
uses equals() | HashMap | Vector, HashTable
defines equals() | *String[^1] | ByteBuffer
[^1]: String, DeprecatedString, their Fly-type equivalents and KString.
This mostly meant that you couldn't use a StringView for finding a value
in Vector<String>.
I'm changing the order of arguments to make the trait type itself first
(`Traits<T>::equals(T, U)`), as I think it's more expected and makes us
more consistent with the rest of the functions that put the stored type
first (like StringUtils functions and binary_serach). I've also renamed
the variable name "other" in find functions to "entry" to give more
importance to the value.
With this change, each of the following lines will now compile
successfully:
Vector<String>().contains_slow("WHF!"sv);
HashTable<String>().contains("WHF!"sv);
HashMap<ByteBuffer, int>().contains("WHF!"sv.bytes());
Now that ""_string is infallible, the only benefit of explicitly
constructing a short string is the ability to do it at compile-time. But
we never do that, so let's simplify the API and remove this
implementation detail from it.
Parsing 'data:' URLs took it's own route. It never set standard URL
fields like path, query or fragment (except for scheme) and instead
gave us separate methods called `data_payload()`, `data_mime_type()`,
and `data_payload_is_base64()`.
Because parsing 'data:' didn't use standard fields, running the
following JS code:
new URL('#a', 'data:text/plain,hello').toString()
not only cleared the path as URLParser doesn't check for data from
data_payload() function (making the result be 'data:#a'), but it also
crashes the program because we forbid having an empty MIME type when we
serialize to string.
With this change, 'data:' URLs will be parsed like every other URLs.
To decode the 'data:' URL contents, one needs to call process_data_url()
on a URL, which will return a struct containing MIME type with already
decoded data! :^)
By not clearing the buffer, we were leaking the path part of a URL into
the query for URLs without an authority component (no '//host').
This could be seen most noticeably in mailto: URLs with header fields
set, as the query part of `mailto:user@example.com?subject=test` was
parsed to `user@example.comsubject=test`.
data: URLs didn't have this problem, because we have a special case for
parsing them.
In order to follow spec text to achieve this, we need to change the
underlying representation of a host in AK::URL to deserialized format.
Before this, we were parsing the host and then immediately serializing
it again.
Making that change resulted in a whole bunch of fallout.
After this change, callers can access the serialized data through
this concept-host-serializer. The functional end result of this
change is that IPv6 hosts are now correctly serialized to be
surrounded with '[' and ']'.