Having an alias function that only wraps another one is silly, and
keeping the more obvious name should flush out more uses of deprecated
strings.
No behavior change.
As a nearby comment says, "This is a terrible approximation".
This doesn't make things less terrible, but it does make things
more correct in the given framework of terribleness.
Fixes#17156.
In cases where we know a string literal will fit in the short string
storage, we can do so at compile time without needing to handle error
propagation. If the provided string literal is too long, a compilation
error will be emitted due to the failed VERIFY statement being a non-
constant expression.
The Unicode spec defines much more complicated caseless matching
algorithms in its Collation spec. This implements the "basic" case
folding comparison.
The existing `is_i32()` and friends only check if `i32` is their
internal type, but a value such as `0` could be literally any integer
type internally. `is_integer<T>()` instead determines whether the
contained value is an integer and can fit inside T.
This error was introduced by 9a7accdd and had a significant impact on
`BufferedFile` behavior. Hence, we started seeing crash in test262.
By itself, the issue was a wrong calculation of the internal reading
spans when using the `read` and `until` parameters. Which can lead to
at worse crash in VERIFY and at least weird behaviors as missed needles
or detections out of bounds.
It was also accompanied by an erroneous test.
This patch fixes the bug, the test and also provides more tests.
This parameter allows to start searching after an offset. For example,
to resume a search.
It is unfortunately a breaking change in API so this patch also modifies
one user and one test.
This implements a FlyString that will de-duplicate String instances. The
FlyString will store the raw encoded data of the String instance: If the
String is a short string, FlyString holds the String::ShortString bytes;
otherwise FlyString holds a pointer to the Detail::StringData.
FlyString itself does not know about String's storage or how to refcount
its Detail::StringData. It defers to String to implement these details.
Since AK can't refer to LibUnicode directly, the strategy here is that
if you need case transformations, you can link LibUnicode and receive
them. If you try to use either of these methods without linking it, then
you'll of course get a linker error (note we don't do any fallbacks to
e.g. ASCII case transformations). If you don't need these methods, you
don't have to link LibUnicode.
DeprecatedFlyString relies heavily on DeprecatedString's StringImpl, so
let's rename it to A) match the name of DeprecatedString, B) write a new
FlyString class that is tied to String.
This allows us to make all comparision operators on the class constexpr
without pulling in a bunch of boilerplate. We don't use the `<compare>`
header because it doesn't compile in the main serenity cross-build due
to the include paths to LibC being incompatible with how libc++ expects
them to be for clang builds.
These instances were detected by searching for files that include
AK/StdLibExtras.h, but don't match the regex:
\\b(abs|AK_REPLACED_STD_NAMESPACE|array_size|ceil_div|clamp|exchange|for
ward|is_constant_evaluated|is_power_of_two|max|min|mix|move|_RawPtr|RawP
tr|round_up_to_power_of_two|swap|to_underlying)\\b
(Without the linebreaks.)
This regex is pessimistic, so there might be more files that don't
actually use any "extra stdlib" functions.
In theory, one might use LibCPP to detect things like this
automatically, but let's do this one step after another.
These instances were detected by searching for files that include
AK/Format.h, but don't match the regex:
\\b(CheckedFormatString|critical_dmesgln|dbgln|dbgln_if|dmesgln|FormatBu
ilder|__FormatIfSupported|FormatIfSupported|FormatParser|FormatString|Fo
rmattable|Formatter|__format_value|HasFormatter|max_format_arguments|out
|outln|set_debug_enabled|StandardFormatter|TypeErasedFormatParams|TypeEr
asedParameter|VariadicFormatParams|v_critical_dmesgln|vdbgln|vdmesgln|vf
ormat|vout|warn|warnln|warnln_if)\\b
(Without the linebreaks.)
This regex is pessimistic, so there might be more files that don't
actually use any formatting functions.
Observe that this revealed that Userland/Libraries/LibC/signal.cpp is
missing an include.
In theory, one might use LibCPP to detect things like this
automatically, but let's do this one step after another.
In practice, this function does not take any perceptible amount of time.
However, this benchmark demonstrates that for extreme values, the
internal for-loop does matter.
Using policy based design `SinglyLinkedList` and
`SinglyLinkedListWithCount` can be combined into one class which takes
a policy to determine how to keep track of the size of the list. The
default policy is to use list iteration to count the items in the list
each time. The `WithCount` form is a different policy which tracks the
size, but comes with the overhead of storing the count and
incrementing/decrementing on each modification.
This model is extensible to have other forms of counting by
implementing only a new policy instead of implementing a totally new
type.
In 7c5e30daaa, the focus was "only" on
Userland/Libraries/, whereas this commit cleans up the remaining
headers in the repo, and any new badly-formatted include.
The class is very similar to `CircularDuplexStream` in its behavior.
Main differences are that `CircularBuffer`:
- does not inherit from `AK::Stream`
- uses `ErrorOr` for its API
- is heap allocated (and OOM-Safe)
This patch also add some tests.
Previously any backslash and the character following it were ignored.
This commit adds a fall through to match the character following the
backslash without checking whether it is "special".
This allows callers to use the following semantics:
using MyVariant = Variant<Empty, int>;
template<typename T>
size_t size() { return TypeList<T>::size; }
auto s = size<MyVariant>();
This will be needed for an upcoming IPC change, which will result in us
knowing the Variant type, but not the underlying variadic types that the
Variant holds.
`OwnPtrWithCustomDeleter` was a decorator which provided the ability
to add a custom deleter to `OwnPtr` by wrapping and taking the deleter
as a run-time argument to the constructor. This solution means that no
additional space is needed for the `OwnPtr` because it doesn't need to
store a pointer to the deleter, but comes at the cost of having an
extra type that stores a pointer for every instance.
This logic is moved directly into `OwnPtr` by adding a template
argument that is defaulted to the default deleter for the type. This
means that the type itself stores the pointer to the deleter instead
of every instance and adds some type safety by encoding the deleter in
the type itself instead of taking a run-time argument.