This fixes an issue where private element values were not always
protected from GC. I found two instances where this was happening:
- ECMAScriptFunctionObject did not mark m_private_methods
- ClassDefinitionEvaluation had two Vector<PrivateElement> that were
opaque to the garbage collector, and so if GC occurred while
constructing a class instance, some or all of its private elements
could get incorrectly collected.
GCC 13 produces the following true positive warnings:
- `-Wredundant-move` when trying to move `result->tooltip()`, which
is a const reference in `Assistant/main.cpp`
- `-Wuse-after-free` when freeing an environment variable before
removing it from `s_malloced_environment_variables`
- `-Wdangling-pointer` when storing an AST node's `this` pointer to the
interpreter's node stack in LibJS. This is not actually an issue, as
it is popped when the scope ends, but GCC has no way of telling this.
Some of these are allocated upon initialization of the intrinsics, and
some lazily, but in neither case the getters actually return a nullptr.
This saves us a whole bunch of pointer dereferences (as NonnullGCPtr has
an `operator T&()`), and also has the interesting side effect of forcing
us to explicitly use the FunctionObject& overload of call(), as passing
a NonnullGCPtr is ambigous - it could implicitly be turned into a Value
_or_ a FunctionObject& (so we have to dereference manually).
This class had slightly confusing semantics and the added weirdness
doesn't seem worth it just so we can say "." instead of "->" when
iterating over a vector of NNRPs.
This patch replaces NonnullRefPtrVector<T> with Vector<NNRP<T>>.
This includes an Error::create overload to create an Error from a UTF-8
StringView. If creating a String from that view fails, the factory will
return an OOM InternalError instead. VM::throw_completion can also make
use of this overload via its perfect forwarding.
First, this adds an overload of PrimitiveString::create for StringView.
This overload will throw an OOM completion if creating a String fails.
This is not only a bit more convenient, but it also ensures at compile
time that all PrimitiveString::create(string_view) invocations will be
handled as String and OOM-aware.
Next, this wraps all invocations to PrimitiveString::create(string_view)
with MUST_OR_THROW_OOM.
A small PrimitiveString::create(DeprecatedFlyString) overload also had
to be added to disambiguate between the StringView and DeprecatedString
overloads.
Having an alias function that only wraps another one is silly, and
keeping the more obvious name should flush out more uses of deprecated
strings.
No behavior change.
In this patch only top level and not the more complicated for loop using
statements are supported. Also, as noted in the latest meeting of tc39
async parts of the spec are not stage 3 thus not included.
DeprecatedFlyString relies heavily on DeprecatedString's StringImpl, so
let's rename it to A) match the name of DeprecatedString, B) write a new
FlyString class that is tied to String.
This makes construction of Utf16String fallible in OOM conditions. The
immediate impact is that PrimitiveString must then be fallible as well,
as it may either transcode UTF-8 to UTF-16, or create a UTF-16 string
from ropes.
There are a couple of places where it is very non-trivial to propagate
the error further. A FIXME has been added to those locations.
This ensures the value goes through the regular ToPrimitive mechanism,
which PropertyKey::from_value() bypasses. This is relevant for objects
with a @@toPrimitive method, for example.
Also enables one skipped test in delete-basic.js, which now passes.
Instead of CallExpression storing its arguments in a Vector<Argument>,
we now custom-allocate the memory slot for CallExpression (and its
subclass NewExpression) so that it fits both CallExpression and its list
of Arguments in one allocation.
This reduces memory usage on twitter.com/awesomekling by 8.8 MiB :^)
ASTNode inherits from RefCounted, which has a single 32-bit member.
This means that there's a 32-bit padding hole after RefCounted,
where we are free to put something (or it will go to waste!)
This patch moves ASTNode::m_start_offset into that padding hole,
and we now have a 32-bit padding hole at the end of ASTNode instead.
This will allow ASTNode subclasses to put things in the ASTNode hole
by moving them to the head of the member list.
Note that js_rope_string() has been folded into this, the old name was
misleading - it would not always create a rope string, only if both
sides are not empty strings. Use a three-argument create() overload
instead.
Three standalone Cell creation functions remain in the JS namespace:
- js_bigint()
- js_string()
- js_symbol()
All of them are leftovers from early iterations when LibJS still took
inspiration from JSC, which itself has jsString(). Nowadays, we pretty
much exclusively use static create() functions to construct types
allocated on the JS heap, and there's no reason to not do the same for
these.
Also change the return type from BigInt* to NonnullGCPtr<BigInt> while
we're here.
This is patch 1/3, replacement of js_string() and js_symbol() follow.
This makes more sense as an Object method rather than living within the
VM class for no good reason. Most of the other 7.3.xx AOs already work
the same way.
Also add spec comments while we're here.
This will make it easier to support both string types at the same time
while we convert code, and tracking down remaining uses.
One big exception is Value::to_string() in LibJS, where the name is
dictated by the ToString AO.
We have a new, improved string type coming up in AK (OOM aware, no null
state), and while it's going to use UTF-8, the name UTF8String is a
mouthful - so let's free up the String name by renaming the existing
class.
Making the old one have an annoying name will hopefully also help with
quick adoption :^)
This patch does two things:
- We now use u32 instead of size_t for the hops and index fields
in EnvironmentCoordinate. This means we're limited to an environment
nesting level and variable count of 4Gs respectively.
- Instead of wrapping it in an Optional, EnvironmentCoordinate now has
a custom valid/invalid state using a magic marker value.
These two changes reduce the size of Identifier by 16 bytes. :^)
Before this change, each AST node had a 64-byte SourceRange member.
This SourceRange had the following layout:
filename: StringView (16 bytes)
start: Position (24 bytes)
end: Position (24 bytes)
The Position structs have { line, column, offset }, all members size_t.
To reduce memory consumption, AST nodes now only store the following:
source_code: NonnullRefPtr<SourceCode> (8 bytes)
start_offset: u32 (4 bytes)
end_offset: u32 (4 bytes)
SourceCode is a new ref-counted data structure that keeps the filename
and original parsed source code in a single location, and all AST nodes
have a pointer to it.
The start_offset and end_offset can be turned into (line, column) when
necessary by calling SourceCode::range_from_offsets(). This will walk
the source code string and compute line/column numbers on the fly, so
it's not necessarily fast, but it should be rare since this information
is primarily used for diagnostics and exception stack traces.
With this, ASTNode shrinks from 80 bytes to 32 bytes. This gives us a
~23% reduction in memory usage when loading twitter.com/awesomekling
(330 MiB before, 253 MiB after!) :^)
This is only visible with something like `Object.getOwnPropertyNames` on
the global object. All other declaration instantiations put the
functions on an environment making the order invisible.
Note that spec order is not quite tree order as in non-strict mode
functions which get hoisted out of blocks appear before top level
functions.
Co-authored-by: Hendiadyoin1 <leon.a@serenityos.org>
This has to get quite messy because we currently do evaluation to value
and reference separately meaning we have to deal with a lot of edge
cases here.