It's not possible to grow one of these vectors beyond what's already in them
since it's not possible to default-construct Nonnull{Own,Ref}Ptr.
Add Vector::shrink() which can be used when you want to shrink the Vector
and delete resize() from the specialized Vectors.
This works just like NonnullRefPtr, except for NonnullOwnPtr's instead.
NonnullOwnPtrVector<T> inherits from Vector<NonnullOwnPtr<T>>, and adds some
comforts on top, like making accessors return T& so we can chase dots (.)
instead of arrows (->) :^)
This is just like OwnPtr (also single-owner), except it cannot be null.
NonnullOwnPtr is perfect as the return type of functions that never need to
return nullptr.
It's also useful as an argument type to encode the fact that the argument
must not be nullptr.
The make<Foo>() helper is changed to return NonnullOwnPtr<Foo>.
Note: You can move() out of a NonnullOwnPtr, and after that the object is
in an invalid state. Internally it will be a nullptr at this point, so we'll
still catch misuse, but the only thing that should be done in this state
is running the destructor. I've used consumable annotations to generate some
warnings when using a NonnullOwnPtr after moving from it, but these only
work when compiling with clang, so be aware of that.
Restructure the makefile a little so it only builds objects once, and
then run them on make clean.
This is a little slower (since we're relinking tests each makeall), but
it also ensures that it will work.
And use it in the scheduler.
IntrusiveList is similar to InlineLinkedList, except that rather than
making assertions about the type (and requiring inheritance), it
provides an IntrusiveListNode type that can be used to put an instance
into many different lists at once.
As a proof of concept, port the scheduler over to use it. The only
downside here is that the "list" global needs to know the position of
the IntrusiveListNode member, so we have to position things a little
awkwardly to make that happen. We also move the runnable lists to
Thread, to avoid having to publicize the node.
The to_foo() functions are for converting when you might not be sure of the
underlying value type. The as_foo() family assumes that you know exactly
what the underlying value type is.
Meet TStyle. It allows you to write things like this:
dbg() << TStyle(TStyle::Red, TStyle::Bold) << "Hello, friends!";
Any style used will be reset along with the newline emitted when the dbg()
temporary goes out of scope. :^)
This can definitely be improved, but I think it's a decent place to start.
This is the same as calling FileSystemPath(foo).string(). The majority of
clients only care about canonicalizing a path, so let's have an easy way
to express that.
We shouldn't allow constructing e.g an OwnPtr from a RefPtr, and similar
conversions. Instead just delete those functions so the compiler whines
loudly if you try to use them.
This patch also deletes constructing OwnPtr from a WeakPtr, even though
that *may* be a valid thing to do, it's sufficiently weird that we can
make the client jump through some hoops if he really wants it. :^)
This patch removes copy_ref() from RefPtr and NonnullRefPtr. This means that
it's now okay to simply copy these smart pointers instead:
- RefPtr = RefPtr // Okay!
- RefPtr = NonnullRefPtr // Okay!
- NonnullRefPtr = NonnullRefPtr // Okay!
- NonnullRefPtr = RefPtr // Not okay, since RefPtr can be null.
I had a silly ambition that we would avoid unnecessary ref count churn by
forcing explicit use of "copy_ref()" wherever a copy was actually needed.
This was making RefPtr a bit clunky to work with, for no real benefit.
This patch adds the missing copy construction/assignment stuff to RefPtr.
You can currently use this to detect the CPU architecture like so:
#if ARCH(I386)
...
#elif ARCH(X86_64)
...
#else
...
#endif
This will be helpful for separating out architecture-specific code blocks.
Instead of computing the path length inside the syscall handler, let the
caller do that work. This allows us to implement to new variants of open()
and creat(), called open_with_path_length() and creat_with_path_length().
These are suitable for use with e.g StringView.
This makes me wonder if the open() syscall should take characters+length
and we'd compute the length at the LibC layer instead. That way we could
also provide an optional non-POSIX open() that takes the length directly..