We can now properly initialize all processors without
crashing by sending SMP IPI messages to synchronize memory
between processors.
We now initialize the APs once we have the scheduler running.
This is so that we can process IPI messages from the other
cores.
Also rework interrupt handling a bit so that it's more of a
1:1 mapping. We need to allocate non-sharable interrupts for
IPIs.
This also fixes the occasional hang/crash because all
CPUs now synchronize memory with each other.
Add a MappedROM::find_chunk_starting_with() helper since that's a very
common usage pattern in clients of this code.
Also convert MultiProcessorParser from a persistent singleton object
to a temporary object constructed via a failable factory function.
This patch adds a MappedROM abstraction to the Kernel VM subsystem.
It's basically the read-only byte buffer equivalent of a TypedMapping.
We use this in the ACPI and MP table parsers to scan for interesting
stuff in low memory instead of doing a bunch of address arithmetic.
This was supposed to be the foundation for some kind of pre-kernel
environment, but nobody is working on it right now, so let's move
everything back into the kernel and remove all the confusion.
There was a frequently occurring pattern of "map this physical address
into kernel VM, then read from it, then unmap it again".
This new typed_map() encapsulates that logic by giving you back a
typed pointer to the kind of structure you're interested in accessing.
It returns a TypedMapping<T> that can be used mostly like a pointer.
When destroyed, the TypedMapping object will unmap the memory. :^)
If we don't support ACPI, just don't instantiate an ACPI parser.
This is way less confusing than having a special parser class whose
only purpose is to do nothing.
We now search for the RSDP in ACPI::initialize() instead of letting
the parser constructor do it. This allows us to defer the decision
to create a parser until we're sure we can make a useful one.
Also, duplicate data in dbg() and klog() calls were removed.
In addition, leakage of virtual address to kernel log is prevented.
This is done by replacing kprintf() calls to dbg() calls with the
leaked data instead.
Also, other kprintf() calls were replaced with klog().
More namespaces have been added to organize the declarations
in a more sensible way.
Also, a namespace StaticParsing has been added to allow early
access to ACPI tables.
Now the DMIDecoder code is more safer, because we don't use raw pointers
or references to objects or data that are located in the physical
address space, so an accidental dereference cannon happen easily.
Instead, we use the PhysicalAddress class to represent those addresses.
Also, the initializer_parser() method is simplified.
Now the ACPI & PCI code is more safer, because we don't use raw pointers
or references to objects or data that are located in the physical
address space, so an accidental dereference cannot happen easily.
Instead, we use the PhysicalAddress class to represent those addresses.