I was surprised to find that dup()'ed fds don't share the close-on-exec flag.
That means it has to be stored separately from the FileDescriptor object.
After I made stdio buffered, we were dropping anything unflushed on exit.
Since /bin/clear just prints out some escape sequences without a newline,
the entire buffer was being discarded.
Also add VirtualConsole::clear() that handles clearing of background VC's.
All right, we can now mmap() a file and it gets magically paged in from fs
in response to an NP page fault. This is really cool :^)
I need to refactor this to support sharing of read-only file-backed pages,
but it's cool to just have something working.
First of all, change sys$mmap to take a struct SC_mmap_params since our
sycsall calling convention can't handle more than 3 arguments.
This exposed a bug in Syscall::invoke() needing to use clobber lists.
It was a bit confusing to debug. :^)
Also keep the canonical errno list in LibC for now. The kernel gets it
from there. This makes building 3rd party code easier.
..also fix broken strchr().
It only works for sending a signal to a process that's in userspace code.
We implement reception by synthesizing a PUSHA+PUSHF in the receiving process
(operating on values in the TSS.)
The TSS CS:EIP is then rerouted to the signal handler and a tiny return
trampoline is constructed in a dedicated region in the receiving process.
Also hacked up /bin/kill to be able to send arbitrary signals (kill -N PID)
Implemented some syscalls: dup(), dup2(), getdtablesize().
FileHandle is now a retainable, since that's needed for dup()'ed fd's.
I didn't really test any of this beyond a basic smoke check.
This is quite cool! The syscall entry point plumbs the register dump
down to sys$fork(), which uses it to set up the child process's TSS
in order to resume execution right after the int 0x80 fork() call. :^)
This works pretty well, although there is some problem with the kernel
alias mappings used to clone the parent process's regions. If I disable
the MM::release_page_directory() code, there's no problem. Probably there's
a premature freeing of a physical page somehow.