The PCI access layer was composed of a bunch of virtual functions that
did nothing but call other virtual functions. The first layer was never
overridden so there was no need for them to be virtual.
This patch removes the indirection and moves logic from PCI::Access
down into the various PCI::get_foo() helpers that were the sole users.
- If there is no VMWare backdoor, don't allocate memory for it.
- Remove the "unsupported" state, instead just don't instantiate.
- Move the command-line parsing from init to the driver.
- Move mouse packet reception from PS2MouseDevice to VMWareBackdoor.
The purpose of init() is to get multi-tasking up and running. We don't
want to do anything in init() that doesn't advance that goal.
This patch moves some things from init() to init_stage2(), and adds a
comment block explaining the split.
In contrast to the previous patchset that was reverted, this time we use
a "special" method to access a file with block size of 512 bytes (like
a harddrive essentially).
We were allowing this dangerous kind of thing:
RefPtr<Base> base;
RefPtr<Derived> derived = base;
This patch changes the {Nonnull,}RefPtr constructors so this is no
longer possible.
To downcast one of these pointers, there is now static_ptr_cast<T>:
RefPtr<Derived> derived = static_ptr_cast<Derived>(base);
Fixing this exposed a ton of cowboy-downcasts in various places,
which we're now forced to fix. :^)
This patch adds a way for a socket to ask to be routed through a
specific interface.
Currently, this option only applies to sending, however, it should also
apply to receiving...somehow :^)
This patch relaxes how we think about UDP packets being "for us" a bit;
the proper way to handle this would be to also check if the matched
socket has SO_BROADCAST set, but we don't have that :)
This commit adds a basic implementation of
the ptrace syscall, which allows one process
(the tracer) to control another process (the tracee).
While a process is being traced, it is stopped whenever a signal is
received (other than SIGCONT).
The tracer can start tracing another thread with PT_ATTACH,
which causes the tracee to stop.
From there, the tracer can use PT_CONTINUE
to continue the execution of the tracee,
or use other request codes (which haven't been implemented yet)
to modify the state of the tracee.
Additional request codes are PT_SYSCALL, which causes the tracee to
continue exection but stop at the next entry or exit from a syscall,
and PT_GETREGS which fethces the last saved register set of the tracee
(can be used to inspect syscall arguments and return value).
A special request code is PT_TRACE_ME, which is issued by the tracee
and causes it to stop when it calls execve and wait for the
tracer to attach.
Previosuly, if we sent a SIGCONT to a stopped thread
and then waitpid() with WSTOPPED on that thread before
the signal was dispatched,
then the WaitBlocker would first unblock (because the thread is stopped)
and only after that the thread would get the SIGCONT signal.
This would mean that when waitpid returns
the waitee is not stopped.
To fix this, we do not unblock the waiting thread
if the waitee thread has a pending SIGCONT.
The test runner currently depends on the bash port being installed.
If you have it, you can run the LibJS test suite inside Serenity
by simply entering /home/anon/js-tests and doing ./run-tests :^)
Instead of blindly setting masks, if we want to disable an IRQ and it's
already masked, we just return. The same happens if we want to enable an
IRQ and it's unmasked.
Setting the m_enabled variable to true or false can help
with monitoring the IRQHandler object(s) later, and there's no good
reason to have an if-else statement in those methods anyway.
Before this change, we did a non-specific EOI, which could lead to
problems with other IRQs that are handled in the PIC. Since the original
8259A datasheet permits such functionality and we are not losing any
functionality, this change is acceptable even though we don't experience
problems with the EOI currently.
This is not a complete fix, since spurious IRQs under heavy loads can
still occur. However, this fix limits the amount of spurious IRQs.
It is encouraged to provide a better fix in the future, probably
something that takes into account handling of PCI level-triggered
interrupts.
Now we don't send raw numbers, but we let the IRQController object to
figure out the correct IRQ number.
This helps in a situation when we have 2 or more IOAPICs, so if IOAPIC
1 is assigned for IRQs 0-23 and IOAPIC 2 is assigned for IRQs 24-47,
if an IRQHandler of IRQ 25 invokes disable() for example, it will call
his responsible IRQController (IOAPIC 2), and the IRQController will
subtract the IRQ number with his assigned offset, and the result is that
the second redirection entry in IOAPIC 2 will be masked.