This should provide some speed up, as currently searches for regions
containing a given address were performed in O(n) complexity, while
this container allows us to do those in O(logn).
The perfcore file format was previously limited to a single process
since the pid/executable/regions data was top-level in the JSON.
This patch moves the process-specific data into a top-level array
named "processes" and we now add entries for each process that has
been sampled during the profile run.
This makes it possible to see samples from multiple threads when
viewing a perfcore file with Profiler. This is extremely cool! :^)
The superuser can now call sys$profiling_enable() with PID -1 to enable
profiling of all running threads in the system. The perf events are
collected in a global PerformanceEventBuffer (currently 32 MiB in size.)
The events can be accessed via /proc/profile
If we can't allocate a PerformanceEventBuffer to store the profiling
events, we now fail sys$profiling_enable() and sys$perf_event()
with ENOMEM instead of carrying on with a broken buffer.
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)
Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.
We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.
This patch adds Space, a class representing a process's address space.
- Each Process has a Space.
- The Space owns the PageDirectory and all Regions in the Process.
This allows us to reorganize sys$execve() so that it constructs and
populates a new Space fully before committing to it.
Previously, we would construct the new address space while still
running in the old one, and encountering an error meant we had to do
tedious and error-prone rollback.
Those problems are now gone, replaced by what's hopefully a set of much
smaller problems and missing cleanups. :^)
There's no need for this to be generic and support running from an
arbitrary thread context. Perf events are always generated from within
the thread being profiled, so take advantage of that to simplify the
code. Also use Vector capacity to avoid heap allocations.
..and allow implicit creation of KResult and KResultOr from ErrnoCode.
This means that kernel functions that return those types can finally
do "return EINVAL;" and it will just work.
There's a handful of functions that still deal with signed integers
that should be converted to return KResults.
Problem:
- Many constructors are defined as `{}` rather than using the ` =
default` compiler-provided constructor.
- Some types provide an implicit conversion operator from `nullptr_t`
instead of requiring the caller to default construct. This violates
the C++ Core Guidelines suggestion to declare single-argument
constructors explicit
(https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#c46-by-default-declare-single-argument-constructors-explicit).
Solution:
- Change default constructors to use the compiler-provided default
constructor.
- Remove implicit conversion operators from `nullptr_t` and change
usage to enforce type consistency without conversion.
This patch merges the profiling functionality in the kernel with the
performance events mechanism. A profiler sample is now just another
perf event, rather than a dedicated thing.
Since perf events were already per-process, this now makes profiling
per-process as well.
Processes with perf events would already write out a perfcore.PID file
to the current directory on death, but since we may want to profile
a process and then let it continue running, recorded perf events can
now be accessed at any time via /proc/PID/perf_events.
This patch also adds information about process memory regions to the
perfcore JSON format. This removes the need to supply a core dump to
the Profiler app for symbolication, and so the "profiler coredump"
mechanism is removed entirely.
There's still a hard limit of 4MB worth of perf events per process,
so this is by no means a perfect final design, but it's a nice step
forward for both simplicity and stability.
Fixes#4848Fixes#4849
Use the TimerQueue to expire blocking operations, which is one less thing
the Scheduler needs to check on every iteration.
Also, add a BlockTimeout class that will automatically handle relative or
absolute timeouts as well as overriding timeouts (e.g. socket timeouts)
more consistently.
Also, rework the TimerQueue class to be able to fire events from
any processor, which requires Timer to be RefCounted. Also allow
creating id-less timers for use by blocking operations.
The SI prefixes "k", "M", "G" mean "10^3", "10^6", "10^9".
The IEC prefixes "Ki", "Mi", "Gi" mean "2^10", "2^20", "2^30".
Let's use the correct name, at least in code.
Only changes the name of the constants, no other behavior change.
This compiles, and contains exactly the same bugs as before.
The regex 'FIXME: PID/' should reveal all markers that I left behind, including:
- Incomplete conversion
- Issues or things that look fishy
- Actual bugs that will go wrong during runtime
This patch introduces sys$perf_event() with two event types:
- PERF_EVENT_MALLOC
- PERF_EVENT_FREE
After the first call to sys$perf_event(), a process will begin keeping
these events in a buffer. When the process dies, that buffer will be
written out to "perfcore" in the current directory unless that filename
is already taken.
This is probably not the best way to do this, but it's a start and will
make it possible to start doing memory allocation profiling. :^)