This commit converts naked `new`s to `AK::try_make` and `AK::try_create`
wherever possible. If the called constructor is private, this can not be
done, so we instead now use the standard-defined and compiler-agnostic
`new (nothrow)`.
Instead of initializing network adapters in init.cpp, let's move that
logic into a separate class to handle this.
Also, it seems like a good idea to shift responsiblity on enumeration
of network adapters after the boot process, so this singleton will take
care of finding the appropriate network adapter when asked to with an
IPv4 address or interface name.
With this change being merged, we simplify the creation logic of
NetworkAdapter derived classes, so we enumerate the PCI bus only once,
searching for driver candidates when doing so, and we let each driver
to test if it is resposible for the specified PCI device.
Previously we'd allocate buffers when sending packets. This patch
avoids these allocations by using the NetworkAdapter's packet queue.
At the same time this also avoids copying partially constructed
packets in order to prepend Ethernet and/or IPv4 headers. It also
properly truncates UDP and raw IP packets.
There's no good reason to distinguish between network interfaces based
on their model. It's probably a good idea to try keep the names more
persistent so scripts written for a specific network interface will be
useable after hotplug event (or after rebooting with new hardware
setup).
This avoids two allocations when receiving network packets. One for
inserting a PacketWithTimestamp into m_packet_queue and another one
when inserting buffers into the list of unused packet buffers.
With this fixed the only allocations in NetworkTask happen when
initially allocating the PacketWithTimestamp structs and when switching
contexts.
This avoids allocations for initializing the Function<T>
for the NetworkAdapter::for_each callback argument.
Applying this patch decreases CPU utilization for NetworkTask
from 40% to 28% when receiving TCP packets at a rate of 100Mbit/s.
We already have another limit for the total number of packet buffers
allowed (max_packet_buffers). This second limit caused us to
repeatedly allocate and then free buffers.
This matches what other operating systems like Linux do:
$ ip route get 0.0.0.0
local 0.0.0.0 dev lo src 127.0.0.1 uid 1000
cache <local>
$ ssh 0.0.0.0
gunnar@0.0.0.0's password:
$ ss -na | grep :22 | grep ESTAB
tcp ESTAB 0 0 127.0.0.1:43118 127.0.0.1:22
tcp ESTAB 0 0 127.0.0.1:22 127.0.0.1:43118
The last IP address in an IPv4 subnet is considered the directed
broadcast address, e.g. for 192.168.3.0/24 the directed broadcast
address is 192.168.3.255. We need to consider this address as
belonging to the interface.
Here's an example with this fix applied, SerenityOS has 192.168.3.190:
[gunnar@nyx ~]$ ping -b 192.168.3.255
WARNING: pinging broadcast address
PING 192.168.3.255 (192.168.3.255) 56(84) bytes of data.
64 bytes from 192.168.3.175: icmp_seq=1 ttl=64 time=0.950 ms
64 bytes from 192.168.3.188: icmp_seq=1 ttl=64 time=2.33 ms
64 bytes from 192.168.3.46: icmp_seq=1 ttl=64 time=2.77 ms
64 bytes from 192.168.3.41: icmp_seq=1 ttl=64 time=4.15 ms
64 bytes from 192.168.3.190: icmp_seq=1 ttl=64 time=29.4 ms
64 bytes from 192.168.3.42: icmp_seq=1 ttl=64 time=30.8 ms
64 bytes from 192.168.3.55: icmp_seq=1 ttl=64 time=31.0 ms
64 bytes from 192.168.3.30: icmp_seq=1 ttl=64 time=33.2 ms
64 bytes from 192.168.3.31: icmp_seq=1 ttl=64 time=33.2 ms
64 bytes from 192.168.3.173: icmp_seq=1 ttl=64 time=41.7 ms
64 bytes from 192.168.3.43: icmp_seq=1 ttl=64 time=47.7 ms
^C
--- 192.168.3.255 ping statistics ---
1 packets transmitted, 1 received, +10 duplicates, 0% packet loss,
time 0ms, rtt min/avg/max/mdev = 0.950/23.376/47.676/16.539 ms
[gunnar@nyx ~]$
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
(...and ASSERT_NOT_REACHED => VERIFY_NOT_REACHED)
Since all of these checks are done in release builds as well,
let's rename them to VERIFY to prevent confusion, as everyone is
used to assertions being compiled out in release.
We can introduce a new ASSERT macro that is specifically for debug
checks, but I'm doing this wholesale conversion first since we've
accumulated thousands of these already, and it's not immediately
obvious which ones are suitable for ASSERT.
Since the receiving socket isn't yet known at packet receive time,
keep timestamps for all packets.
This is useful for keeping statistics about in-kernel queue latencies
in the future, and it can be used to implement SO_TIMESTAMP.
Since the CPU already does almost all necessary validation steps
for us, we don't really need to attempt to do this. Doing it
ourselves doesn't really work very reliably, because we'd have to
account for other processors modifying virtual memory, and we'd
have to account for e.g. pages not being able to be allocated
due to insufficient resources.
So change the copy_to/from_user (and associated helper functions)
to use the new safe_memcpy, which will return whether it succeeded
or not. The only manual validation step needed (which the CPU
can't perform for us) is making sure the pointers provided by user
mode aren't pointing to kernel mappings.
To make it easier to read/write from/to either kernel or user mode
data add the UserOrKernelBuffer helper class, which will internally
either use copy_from/to_user or directly memcpy, or pass the data
through directly using a temporary buffer on the stack.
Last but not least we need to keep syscall params trivial as we
need to copy them from/to user mode using copy_from/to_user.
MemoryManager cannot use the Singleton class because
MemoryManager::initialize is called before the global constructors
are run. That caused the Singleton to be re-initialized, causing
it to create another MemoryManager instance.
Fixes#3226
This was supposed to be the foundation for some kind of pre-kernel
environment, but nobody is working on it right now, so let's move
everything back into the kernel and remove all the confusion.
The idea behind WeakPtr<NetworkAdapter> was to support hot-pluggable
network adapters, but on closer thought, that's super impractical so
let's not go down that road.