This commit adds Processor::set_thread_specific_data, and this function
is used to factor out architecture specific implementation of setting
the thread specific data. This function is implemented for
aarch64 and x86_64, and the callsites are changed to use this function
instead.
This new method is meant to be used in both userspace and kernel code.
The idea is to allow printing of a verbose message and then returning an
errno code which is the proper mechanism for kernel code because we
should almost always assume that such error will be propagated back to
userspace in some way, so the userspace code could reasonably decode it.
For userspace code however, this new method is meant to be a simple
wrapper for Error::from_string_view, because for most invocations, it's
much more useful to have a verbose & literal error than a errno code, so
we simply ignore that errno code completely in such context.
Returning literal strings is not the proper action here, because we
should always assume that error could be propagated back to userland, so
we need to keep a valid errno when returning an Error.
Returning literal strings is not the proper action here, because we
should always assume that error could be propagated back to userland, so
we need to keep a valid errno when returning an Error.
For example, consider cases where we want to propagate errors only in
specific instances:
auto result = read_data(); // something like ErrorOr<ByteBuffer>
if (result.is_error() && result.error().code() != EINTR)
continue;
auto bytes = TRY(result);
The TRY invocation will currently copy the byte buffer when the
expression (in this case, just a local variable) is stored into
_temporary_result.
This patch binds the expression to a reference to prevent such copies.
In less trival invocations (such as TRY(some_function()), this will
incur only temporary lifetime extensions, i.e. no functional change.
This is needed so we can retrieve the registers of a traced
thread that was attached to while it was running.
Attaching with ptrace to a running thread sends SIGSTOP to it.
This adds the necessary code to init.cpp to be able to execute the first
userspace process. To do this, first the filesystem code is initialized,
which will use the ramdisk embedded into the kernel image. Then the
first userspace process, /bin/SystemServer is executed. :^)
The ramdisk code is used as it is useful for the bring-up of the aarch64
port, however once the kernel has support for better ram-based
filesystems, the ramdisk code will be removed again.
The emulated aarch64 CPU does not contain the RNG cpu feature, so the
random number generator was not seeded. This commit adds a fallback to
use TimeManagement as a entropy source, such that get_good_random_bytes
works, which is needed for running the first userspace application on
aarch64.
This sets up the correct ThreadRegisters state when a process is
exec'ed, which happens when the first userspace application is executed.
Also changes Processor.cpp to get the stack pointer from the
ThreadRegisters.
This allows the function to be called from other translation units, in
particular this allows the CrashHandler.cpp file to be shared between
aarch64 and x86_64.
Setting the kernel_load_base variable caused backtracking to regress, so
to have proper backtracing the calculation of the symbol address in
KSyms.cpp needs to keep into account that the aarch64 kernel is linked
at a high virtual memory address.
When we execute in userspace, the exception level is EL0, so to handle
exceptions, such as interrupts, and syscalls, we need to add handlers to
vector_table.S. For now we only support running userspace applications
in AArch64 mode, so this commit only adds the handlers for that mode.
To detect instruction aborts, a helper to Registers.h is added, and used
in Interrupts.cpp. Additionally, the PageFault class gets a setter to
set the PageFaults m_is_instruction_fetch bool, and is also used in
Interrupts.cpp.
This reverts commit 4e0f85432a as the
ramdisk code is useful for the bring-up of the aarch64 port. Once the
kernel supports better ram-based filesystems, this code will be removed
again.
This replaces manually grabbing the thread's main lock.
This lets us remove the `get_thread_name` and `set_thread_name` syscalls
from the big lock. :^)