From now on, we don't allow jailed processes to open all device nodes in
/dev, but only allow jailed processes to open /dev/full, /dev/zero,
/dev/null, and various TTY and PTY devices (and not including virtual
consoles) so we basically restrict applications to what they can do when
they are in jail.
The motivation for this type of restriction is to ensure that even if a
remote code execution occurred, the damage that can be done is very
small.
We also don't restrict reading and writing on device nodes that were
already opened, because that limit seems not useful, especially in the
case where we do want to provide an OpenFileDescription to such device
but nothing further than that.
Until now, our kernel has reimplemented a number of AK classes to
provide automatic internal locking:
- RefPtr
- NonnullRefPtr
- WeakPtr
- Weakable
This patch renames the Kernel classes so that they can coexist with
the original AK classes:
- RefPtr => LockRefPtr
- NonnullRefPtr => NonnullLockRefPtr
- WeakPtr => LockWeakPtr
- Weakable => LockWeakable
The goal here is to eventually get rid of the Lock* classes in favor of
using external locking.
This was a premature optimization from the early days of SerenityOS.
The eternal heap was a simple bump pointer allocator over a static
byte array. My original idea was to avoid heap fragmentation and improve
data locality, but both ideas were rooted in cargo culting, not data.
We would reserve 4 MiB at boot and only ended up using ~256 KiB, wasting
the rest.
This patch replaces all kmalloc_eternal() usage by regular kmalloc().
We now use AK::Error and AK::ErrorOr<T> in both kernel and userspace!
This was a slightly tedious refactoring that took a long time, so it's
not unlikely that some bugs crept in.
Nevertheless, it does pass basic functionality testing, and it's just
real nice to finally see the same pattern in all contexts. :^)
Previously there was a mix of returning plain strings and returning
explicit string views using `operator ""sv`. This change switches them
all to standardized on `operator ""sv` as it avoids a call to strlen.
This singleton simplifies many aspects that we struggled with before:
1. There's no need to make derived classes of Device expose the
constructor as public anymore. The singleton is a friend of them, so he
can call the constructor. This solves the issue with try_create_device
helper neatly, hopefully for good.
2. Getting a reference of the NullDevice is now being done from this
singleton, which means that NullDevice no longer needs to use its own
singleton, and we can apply the try_create_device helper on it too :)
3. We can now defer registration completely after the Device constructor
which means the Device constructor is merely assigning the major and
minor numbers of the Device, and the try_create_device helper ensures it
calls the after_inserting method immediately after construction. This
creates a great opportunity to make registration more OOM-safe.
Instead of doing so in the constructor, let's do immediately after the
constructor, so we can safely pass a reference of a Device, so the
SysFSDeviceComponent constructor can use that object to identify whether
it's a block device or a character device.
This allows to us to not hold a device in SysFSDeviceComponent with a
RefPtr.
Also, we also call the before_removing method in both SlavePTY::unref
and File::unref, so because Device has that method being overrided, it
can ensure the device is removed always cleanly.
These methods are no longer needed because SystemServer is able to
populate the DevFS on its own.
Device absolute_path no longer assume a path to the /dev location,
because it really should not assume any path to a Device node.
Because StorageManagement still needs to know the storage name, we
declare a virtual method only for StorageDevices to override, but this
technique should really be removed later on.
Instead, try to create the device objects in separate static methods,
and if we fail for some odd reason to allocate memory for such devices,
just panic with that reason.
SPDX License Identifiers are a more compact / standardized
way of representing file license information.
See: https://spdx.dev/resources/use/#identifiers
This was done with the `ambr` search and replace tool.
ambr --no-parent-ignore --key-from-file --rep-from-file key.txt rep.txt *
Besides removing the monolithic DevFSDeviceInode::determine_name()
method, being able to determine a device's name inside the /dev
hierarchy outside of DevFS has its uses.
Since the CPU already does almost all necessary validation steps
for us, we don't really need to attempt to do this. Doing it
ourselves doesn't really work very reliably, because we'd have to
account for other processors modifying virtual memory, and we'd
have to account for e.g. pages not being able to be allocated
due to insufficient resources.
So change the copy_to/from_user (and associated helper functions)
to use the new safe_memcpy, which will return whether it succeeded
or not. The only manual validation step needed (which the CPU
can't perform for us) is making sure the pointers provided by user
mode aren't pointing to kernel mappings.
To make it easier to read/write from/to either kernel or user mode
data add the UserOrKernelBuffer helper class, which will internally
either use copy_from/to_user or directly memcpy, or pass the data
through directly using a temporary buffer on the stack.
Last but not least we need to keep syscall params trivial as we
need to copy them from/to user mode using copy_from/to_user.
As suggested by Joshua, this commit adds the 2-clause BSD license as a
comment block to the top of every source file.
For the first pass, I've just added myself for simplicity. I encourage
everyone to add themselves as copyright holders of any file they've
added or modified in some significant way. If I've added myself in
error somewhere, feel free to replace it with the appropriate copyright
holder instead.
Going forward, all new source files should include a license header.
We now have these API's in <Kernel/Random.h>:
- get_fast_random_bytes(u8* buffer, size_t buffer_size)
- get_good_random_bytes(u8* buffer, size_t buffer_size)
- get_fast_random<T>()
- get_good_random<T>()
Internally they both use x86 RDRAND if available, otherwise they fall
back to the same LCG we had in RandomDevice all along.
The main purpose of this patch is to give kernel code a way to better
express its needs for random data.
Randomness is something that will require a lot more work, but this is
hopefully a step in the right direction.
After reading a bunch of POSIX specs, I've learned that a file descriptor
is the number that refers to a file description, not the description itself.
So this patch renames FileDescriptor to FileDescription, and Process now has
FileDescription* file_description(int fd).
Also run it across the whole tree to get everything using the One True Style.
We don't yet run this in an automated fashion as it's a little slow, but
there is a snippet to do so in makeall.sh.