Pass the file name in a stack-allocated buffer instead of using an AK::String
when iterating directories. This dramatically reduces the amount of cycles
spent traversing the filesystem.
After I made stdio buffered, we were dropping anything unflushed on exit.
Since /bin/clear just prints out some escape sequences without a newline,
the entire buffer was being discarded.
Also add VirtualConsole::clear() that handles clearing of background VC's.
All right, we can now mmap() a file and it gets magically paged in from fs
in response to an NP page fault. This is really cool :^)
I need to refactor this to support sharing of read-only file-backed pages,
but it's cool to just have something working.
This is dirty but pretty cool! If we have a pending, unmasked signal for
a process that's blocked inside the kernel, we set up alternate stacks
for that process and unblock it to execute the signal handler.
A slightly different return trampoline is used here: since we need to
get back into the kernel, a dedicated syscall is used (sys$sigreturn.)
This restores the TSS contents of the process to the state it was in
while we were originally blocking in the kernel.
NOTE: There's currently only one "kernel resume TSS" so signal nesting
definitely won't work.
Processes are either alive (with many substates), dead or forgiven.
A dead process is forgiven when the parent waitpid()s on it.
Dead orphans are also forgiven.
There's a lot of work to be done around this.
It only works for sending a signal to a process that's in userspace code.
We implement reception by synthesizing a PUSHA+PUSHF in the receiving process
(operating on values in the TSS.)
The TSS CS:EIP is then rerouted to the signal handler and a tiny return
trampoline is constructed in a dedicated region in the receiving process.
Also hacked up /bin/kill to be able to send arbitrary signals (kill -N PID)
This is quite cool! The syscall entry point plumbs the register dump
down to sys$fork(), which uses it to set up the child process's TSS
in order to resume execution right after the int 0x80 fork() call. :^)
This works pretty well, although there is some problem with the kernel
alias mappings used to clone the parent process's regions. If I disable
the MM::release_page_directory() code, there's no problem. Probably there's
a premature freeing of a physical page somehow.
We now make three VirtualConsoles at boot: tty0, tty1, and tty2.
We launch an instance of /bin/sh in each one.
You switch between them with Alt+1/2/3
How very very cool :^)
The SpinLock was all backwards and didn't actually work. Fixing it exposed
how wrong most of the locking here is.
I need to come up with a better granularity here.
- sys$readlink + readlink()
- Add a /proc/PID/exe symlink to the process's executable.
- Print symlink contents in ls output.
- Some work on plumbing options into VFS::open().
This shows some info about the MM. Right now it's just the zone count
and the number of free physical pages. Lots more can be added.
Also added "exit" to sh so we can nest shells and exit from them.
I also noticed that we were leaking all the physical pages, so fixed that.