Commit graph

39 commits

Author SHA1 Message Date
Tom
6cb640eeba Kernel: Move some time related code from Scheduler into TimeManagement
Use the TimerQueue to expire blocking operations, which is one less thing
the Scheduler needs to check on every iteration.

Also, add a BlockTimeout class that will automatically handle relative or
absolute timeouts as well as overriding timeouts (e.g. socket timeouts)
more consistently.

Also, rework the TimerQueue class to be able to fire events from
any processor, which requires Timer to be RefCounted. Also allow
creating id-less timers for use by blocking operations.
2020-11-30 13:17:02 +01:00
Nico Weber
323e727a4c Kernel+LibC: Add adjtime(2)
Most systems (Linux, OpenBSD) adjust 0.5 ms per second, or 0.5 us per
1 ms tick. That is, the clock is sped up or slowed down by at most
0.05%.  This means adjusting the clock by 1 s takes 2000 s, and the
clock an be adjusted by at most 1.8 s per hour.

FreeBSD adjusts 5 ms per second if the remaining time adjustment is
>= 1 s (0.5%) , else it adjusts by 0.5 ms as well. This allows adjusting
by (almost) 18 s per hour.

Since Serenity OS can lose more than 22 s per hour (#3429), this
picks an adjustment rate up to 1% for now. This allows us to
adjust up to 36s per hour, which should be sufficient to adjust
the clock fast enough to keep up with how much time the clock
currently loses. Once we have a fancier NTP implementation that can
adjust tick rate in addition to offset, we can think about reducing
this.

adjtime is a bit old-school and most current POSIX-y OSs instead
implement adjtimex/ntp_adjtime, but a) we have to start somewhere
b) ntp_adjtime() is a fairly gnarly API. OpenBSD's adjfreq looks
like it might provide similar functionality with a nicer API. But
before worrying about all this, it's probably a good idea to get
to a place where the kernel APIs are (barely) good enough so that
we can write an ntp service, and once we have that we should write
a way to automatically evaluate how well it keeps the time adjusted,
and only then should we add improvements ot the adjustment mechanism.
2020-11-10 19:03:08 +01:00
Nico Weber
c9c3667ea7 Kernel: Update TimeManagement::m_epoch_time directly in increment_time_since_boot 2020-11-07 18:28:35 +01:00
Tom
d5bb5d109b Kernel: Fix HPET timer not firing in Bochs
* Change the register structures to use the volatile keyword explicitly
  on the register values. This avoids accidentally omitting it as any
  access will be guaranteed volatile.
* Don't assume we can read/write 64 bit value to the main counter and
  the comparator. Not all HPET implementations may support this. So,
  just use 32 bit words to access the registers. This ultimately works
  around a bug in Bochs 2.6.11 that loses 32 bits of a 64 bit write to
  a timer's comparator register (it internally writes one half and
  clears the Tn_VAL_SET_CNF bit, and then because it's cleared it
  fails to write the second half).
* Properly calculate the tick duration in calculate_ticks_in_nanoseconds
* As per specification, changing the frequency of one periodic timer
  requires a restart of all periodic timers as it requires the main
  counter to be reset.
2020-11-06 15:51:56 +01:00
Tom
180cc85d79 Kernel: Report more accurate ticks per second for APIC timer 2020-10-29 22:26:08 +01:00
Tom
d076b00248 Kernel: Fix APIC timer frequency
The APIC current count register decrements on each clock tick.
Fixes the APIC timer firing much less frequently than it should be.
2020-10-29 22:10:20 +01:00
Tom
8c764319ad Kernel: Various APIC timer fixes 2020-10-26 08:57:25 +01:00
Tom
fe615e601a Kernel: Set up and calibrate APIC timer, and enable timer on all CPUs
This enables the APIC timer on all CPUs, which means Scheduler::timer_tick
is now called on all CPUs independently. We still don't do anything on
the APs as it instantly crashes due to a number of other problems.
2020-10-25 21:18:35 +01:00
Linus Groh
bcfc6f0c57 Everywhere: Fix more typos 2020-10-03 12:36:49 +02:00
Ben Wiederhake
64cc3f51d0 Meta+Kernel: Make clang-format-10 clean 2020-09-25 21:18:17 +02:00
asynts
70dd97c46e AK: Remove FixedArray class. 2020-09-08 14:01:21 +02:00
Nico Weber
e8131f503d Kernel: Let TimeManagement keep epoch time as timespec
Previously, it was kept as just a time_t and the sub-second
offset was inferred from the monotonic clock. This means that
sub-second time adjustments were ignored.

Now that `ntpquery -s` can pass in a time with sub-second
precision, it makes sense to keep time at that granularity
in the kernel.

After this, `ntpquery -s` immediately followed by `ntpquery` shows
an offset of 0.02s (that is, on the order of network roundtrip time)
instead of up to 0.75s previously.
2020-09-07 11:22:48 +02:00
Tom
d89582880e Kernel: Switch singletons to use new Singleton class
MemoryManager cannot use the Singleton class because
MemoryManager::initialize is called before the global constructors
are run. That caused the Singleton to be re-initialized, causing
it to create another MemoryManager instance.

Fixes #3226
2020-08-25 09:48:48 +02:00
Andreas Kling
2fd9e72264 Revert "Kernel: Switch singletons to use new Singleton class"
This reverts commit f48feae0b2.
2020-08-22 18:01:59 +02:00
Andreas Kling
8925ad3fa0 Revert "Kernel: Move Singleton class to AK"
This reverts commit f0906250a1.
2020-08-22 16:34:49 +02:00
Andreas Kling
68580d5a8d Revert "AK: Get rid of make_singleton function"
This reverts commit 5a98e329d1.
2020-08-22 16:34:14 +02:00
Tom
5a98e329d1 AK: Get rid of make_singleton function
Just default the InitFunction template argument.
2020-08-22 10:46:24 +02:00
Tom
f0906250a1 Kernel: Move Singleton class to AK 2020-08-22 10:46:24 +02:00
Tom
f48feae0b2 Kernel: Switch singletons to use new Singleton class
Fixes #3226
2020-08-21 11:47:35 +02:00
Andreas Kling
8d6910b78e Kernel: Use map_typed() in HPET code and add a register access helper 2020-06-21 00:58:55 +02:00
Tom
b5f827d560 HPET: Fix accessing HPET registers
This resolves a bochs panic during bootup:

[Kernel]: HPET @ P0x07ff0fc0
00691951632p[HPET  ] >>PANIC<< Unsupported HPET read at address 0x0000fed00100

These changes however don't fully resolve #2162
2020-06-01 17:35:51 +02:00
Andreas Kling
21d5f4ada1 Kernel: Absorb LibBareMetal back into the kernel
This was supposed to be the foundation for some kind of pre-kernel
environment, but nobody is working on it right now, so let's move
everything back into the kernel and remove all the confusion.
2020-05-16 12:00:04 +02:00
Andreas Kling
2d35810e0a Kernel: Add TimeManagement::now_as_timeval()
Hide the implementation of time-of-day computation in TimeManagement.
2020-05-16 11:34:01 +02:00
Andreas Kling
85aafe492d Kernel: Remove dubious use of "volatile" in HPET code 2020-05-16 10:55:54 +02:00
Andreas Kling
c24304dca3 Kernel: Use NonnullRefPtrVector for HardwareTimer and HPETComparator 2020-05-08 21:22:58 +02:00
Andreas Kling
e3b450005f Kernel: Remove CommandLine::get() in favor of lookup()
lookup() returns an Optional<String> which allows us to implement easy
default values using lookup(key).value_or(default_value);
2020-04-18 14:22:42 +02:00
Andreas Kling
905519bc76 Kernel: Fix dumb logic typo in HardwareTimer::handle_irq() 2020-04-16 18:53:38 +02:00
Andreas Kling
c891c87cb5 Kernel: Rename HardwareTimer::change_function() => set_callback()
Also make it non-virtual since nothing needs to override it.
2020-04-16 18:51:39 +02:00
Andreas Kling
b035267afa Kernel: Remove "stale callback" concept from time management
If a hardware timer doesn't have a callback registered, it's now simply
represented by a null m_callback.
2020-04-16 18:50:22 +02:00
Andreas Kling
4b1f056e3a Kernel: Rename HardwareTimer::m_function_to_call => m_callback 2020-04-16 18:49:20 +02:00
Andreas Kling
1e89f7d64e Kernel: Remove an unnecessary indirection between timer and scheduler
We don't need a wrapper Function object that just forwards the timer
callback to the scheduler tick function. It already has the same
signature, so we can just plug it in directly. :^)

Same with the clock updating function.
2020-04-16 18:49:20 +02:00
Andreas Kling
44d58b85ef Kernel: Simplify the way we pass HardwareTimers around a bit
Instead of passing around indices into the m_hardware_timers vector,
just pass around a HardwareTimer* instead.
2020-04-16 18:49:20 +02:00
Liav A
a7c5a1fe69 Kernel: Simplify the Time management initialization 2020-04-09 19:59:53 +02:00
Andreas Kling
871d450b93 Kernel: Remove redundant "ACPI" from filenames in ACPI/ 2020-04-09 18:17:27 +02:00
Andreas Kling
4644217094 Kernel: Remove "non-operational" ACPI parser state
If we don't support ACPI, just don't instantiate an ACPI parser.
This is way less confusing than having a special parser class whose
only purpose is to do nothing.

We now search for the RSDP in ACPI::initialize() instead of letting
the parser constructor do it. This allows us to defer the decision
to create a parser until we're sure we can make a useful one.
2020-04-09 17:19:11 +02:00
Andreas Kling
a7bbfda034 Kernel: Rename KParams => Kernel::CommandLine
Let's make this read more like English.
2020-04-08 17:19:46 +02:00
Liav A
b1365d94f4 Kernel: Align read operation in HPET registers' block 2020-04-01 18:35:57 +02:00
Andreas Kling
7d862dd5fc AK: Reduce header dependency graph of String.h
String.h no longer pulls in StringView.h. We do this by moving a bunch
of String functions out-of-line.
2020-03-23 13:48:44 +01:00
Liav A
9db291d885 Kernel: Introduce the new Time management subsystem
This new subsystem includes better abstractions of how time will be
handled in the OS. We take advantage of the existing RTC timer to aid
in keeping time synchronized. This is standing in contrast to how we
handled time-keeping in the kernel, where the PIT was responsible for
that function in addition to update the scheduler about ticks.
With that new advantage, we can easily change the ticking dynamically
and still keep the time synchronized.

In the process context, we no longer use a fixed declaration of
TICKS_PER_SECOND, but we call the TimeManagement singleton class to
provide us the right value. This allows us to use dynamic ticking in
the future, a feature known as tickless kernel.

The scheduler no longer does by himself the calculation of real time
(Unix time), and just calls the TimeManagment singleton class to provide
the value.

Also, we can use 2 new boot arguments:
- the "time" boot argument accpets either the value "modern", or
  "legacy". If "modern" is specified, the time management subsystem will
  try to setup HPET. Otherwise, for "legacy" value, the time subsystem
  will revert to use the PIT & RTC, leaving HPET disabled.
  If this boot argument is not specified, the default pattern is to try
  to setup HPET.
- the "hpet" boot argumet accepts either the value "periodic" or
  "nonperiodic". If "periodic" is specified, the HPET will scan for
  periodic timers, and will assert if none are found. If only one is
  found, that timer will be assigned for the time-keeping task. If more
  than one is found, both time-keeping task & scheduler-ticking task
  will be assigned to periodic timers.
  If this boot argument is not specified, the default pattern is to try
  to scan for HPET periodic timers. This boot argument has no effect if
  HPET is disabled.

In hardware context, PIT & RealTimeClock classes are merely inheriting
from the HardwareTimer class, and they allow to use the old i8254 (PIT)
and RTC devices, managing them via IO ports. By default, the RTC will be
programmed to a frequency of 1024Hz. The PIT will be programmed to a
frequency close to 1000Hz.

About HPET, depending if we need to scan for periodic timers or not,
we try to set a frequency close to 1000Hz for the time-keeping timer
and scheduler-ticking timer. Also, if possible, we try to enable the
Legacy replacement feature of the HPET. This feature if exists,
instructs the chipset to disconnect both i8254 (PIT) and RTC.
This behavior is observable on QEMU, and was verified against the source
code:
ce967e2f33

The HPETComparator class is inheriting from HardwareTimer class, and is
responsible for an individual HPET comparator, which is essentially a
timer. Therefore, it needs to call the singleton HPET class to perform
HPET-related operations.

The new abstraction of Hardware timers brings an opportunity of more new
features in the foreseeable future. For example, we can change the
callback function of each hardware timer, thus it makes it possible to
swap missions between hardware timers, or to allow to use a hardware
timer for other temporary missions (e.g. calibrating the LAPIC timer,
measuring the CPU frequency, etc).
2020-03-19 15:48:00 +01:00