The only icons we are currently warning about are designed
and rendered as small icons intentionally, as their only use
is in desktop applets, and thus are exempt to this rule.
This reduces build spam back down to a minimum.
I should have just done this in the first place, back in #4729
Based on pull #3236 by tomuta, this adds helper methods for generic
device initialization, and partily-broken virtqueue helper methods
Co-authored-by: Tom <tomut@yahoo.com>
Co-authored-by: Sahan <sahan.h.fernando@gmail.com>
The end goal of this commit is to allow to boot on bare metal with no
PS/2 device connected to the system. It turned out that the original
code relied on the existence of the PS/2 keyboard, so VirtualConsole
called it even though ACPI indicated the there's no i8042 controller on
my real machine because I didn't plug any PS/2 device.
The code is much more flexible, so adding HID support for other type of
hardware (e.g. USB HID) could be much simpler.
Briefly describing the change, we have a new singleton called
HIDManagement, which is responsible to initialize the i8042 controller
if exists, and to enumerate its devices. I also abstracted a bit
things, so now every Human interface device is represented with the
HIDDevice class. Then, there are 2 types of it - the MouseDevice and
KeyboardDevice classes; both are responsible to handle the interface in
the DevFS.
PS2KeyboardDevice, PS2MouseDevice and VMWareMouseDevice classes are
responsible for handling the hardware-specific interface they are
assigned to. Therefore, they are inheriting from the IRQHandler class.
Almost a year after first working on this, it's finally done: an
implementation of Promises for LibJS! :^)
The core functionality is working and closely following the spec [1].
I mostly took the pseudo code and transformed it into C++ - if you read
and understand it, you will know how the spec implements Promises; and
if you read the spec first, the code will look very familiar.
Implemented functions are:
- Promise() constructor
- Promise.prototype.then()
- Promise.prototype.catch()
- Promise.prototype.finally()
- Promise.resolve()
- Promise.reject()
For the tests I added a new function to test-js's global object,
runQueuedPromiseJobs(), which calls vm.run_queued_promise_jobs().
By design, queued jobs normally only run after the script was fully
executed, making it improssible to test handlers in individual test()
calls by default [2].
Subsequent commits include integrations into LibWeb and js(1) -
pretty-printing, running queued promise jobs when necessary.
This has an unusual amount of dbgln() statements, all hidden behind the
PROMISE_DEBUG flag - I'm leaving them in for now as they've been very
useful while debugging this, things can get quite complex with so many
asynchronously executed functions.
I've not extensively explored use of these APIs for promise-based
functionality in LibWeb (fetch(), Notification.requestPermission()
etc.), but we'll get there in due time.
[1]: https://tc39.es/ecma262/#sec-promise-objects
[2]: https://tc39.es/ecma262/#sec-jobs-and-job-queues
The hierarchy is AHCIController, AHCIPortHandler, AHCIPort and
SATADiskDevice. Each AHCIController has at least one AHCIPortHandler.
An AHCIPortHandler is an interrupt handler that takes care of
enumeration of handled AHCI ports when an interrupt occurs. Each
AHCIPort takes care of one SATADiskDevice, and later on we can add
support for Port multiplier.
When we implement support of Message signalled interrupts, we can spawn
many AHCIPortHandlers, and allow each one of them to be responsible for
a set of AHCIPorts.
This makes them available for use by other language servers.
Also as a bonus, update the Shell language server to discover some
symbols and add go-to-definition functionality :^)
This patchset allows the editor to avoid redrawing the entire line when
the changes cause no unrecoverable style updates, and are at the end of
the line (this applies to most normal typing situations).
Cases that this does not resolve:
- When the cursor is not at the end of the buffer
- When a display refresh changes the styles on the already-drawn parts
of the line
- When the prompt has not yet been drawn, or has somehow changed
Fixes#5296.
Detection broke when we moved from '#ifdef DEBUG_FOO dbgln()' to 'dbgln<DEBUG_FOO>()'.
This patch makes detection more general, which sadly runs into more false-positives.
No rotten code was found, hooray! :^)
This wrapper abstracts the watch_file setup and file handling, and
allows using the watch_file events as part of the event loop via the
Core::Notifier class.
Also renames the existing DirectoryWatcher class to BlockingFileWatcher,
and adds support for the Modified mode in this class.
This fills in a bunch of the FIXMEs that was in prepare_script.
execute_script is almost finished, it's just missing the module side.
As an aside, let's not assert when inserting a script element with
innerHTML.
This parser will be used by the C++ langauge server to provide better
auto-complete (& maybe also other things in the future).
It is designed to be error tolerant, and keeps track of the position
spans of the AST nodes, which should be useful later for incremental
parsing.
This was done with the help of several scripts, I dump them here to
easily find them later:
awk '/#ifdef/ { print "#cmakedefine01 "$2 }' AK/Debug.h.in
for debug_macro in $(awk '/#ifdef/ { print $2 }' AK/Debug.h.in)
do
find . \( -name '*.cpp' -o -name '*.h' -o -name '*.in' \) -not -path './Toolchain/*' -not -path './Build/*' -exec sed -i -E 's/#ifdef '$debug_macro'/#if '$debug_macro'/' {} \;
done
# Remember to remove WRAPPER_GERNERATOR_DEBUG from the list.
awk '/#cmake/ { print "set("$2" ON)" }' AK/Debug.h.in
This adds support for FUTEX_WAKE_OP, FUTEX_WAIT_BITSET, FUTEX_WAKE_BITSET,
FUTEX_REQUEUE, and FUTEX_CMP_REQUEUE, as well well as global and private
futex and absolute/relative timeouts against the appropriate clock. This
also changes the implementation so that kernel resources are only used when
a thread is blocked on a futex.
Global futexes are implemented as offsets in VMObjects, so that different
processes can share a futex against the same VMObject despite potentially
being mapped at different virtual addresses.
All users of this mechanism have been switched to anonymous files and
passing file descriptors with sendfd()/recvfd().
Shbufs got us where we are today, but it's time we say good-bye to them
and welcome a much more idiomatic replacement. :^)
We can now test a _very_ basic transaction via `do_debug_transfer()`.
This function merely attaches some TDs to the LSCTRL queue head
and points some input and output buffers. We then sense an interrupt
with USBSTS value of 1, meaning Interrupt On Completion
(of the transaction). At this point, the input buffer is filled with
some data.
When ProcFS could no longer allocate KBuffer objects to serve calls to
read, it would just return 0, indicating EOF. This then triggered
parsing errors because code assumed it read the file.
Because read isn't supposed to return ENOMEM, change ProcFS to populate
the file data upon file open or seek to the beginning. This also means
that calls to open can now return ENOMEM if needed. This allows the
caller to either be able to successfully open the file and read it, or
fail to open it in the first place.
This adds the ability for a Region to define volatile/nonvolatile
areas within mapped memory using madvise(). This also means that
memory purging takes into account all views of the PurgeableVMObject
and only purges memory that is not needed by all of them. When calling
madvise() to change an area to nonvolatile memory, return whether
memory from that area was purged. At that time also try to remap
all memory that is requested to be nonvolatile, and if insufficient
pages are available notify the caller of that fact.
Resources embedded by the embed_resource() function will now also expose
a SECTION_start and SECTION_size symbol so the embedded resource can be found
by an application without having to parse its own ELF image which is not
something applications can currently do from userspace.
We now configure the gcc spec files to use a different crt files for
static & PIE binaries.
This relieves us from the need to explicitly specify the desired crt0
file in cmake scripts.
Problem:
- These utility functions are only used in `AK`, but are being defined
in the top-level. This clutters the top-level.
Solution:
- Move the utility functions to `Meta/CMake/utils.cmake` and include
where needed.
- Also, move `all_the_debug_macros.cmake` into `Meta/CMake` directory
to consolidate the location of `*.cmake` script files.