/* * Copyright (c) 2020, the SerenityOS developers. * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #ifdef AK_OS_WINDOWS # include #endif namespace AK { int days_in_month(int year, unsigned month) { VERIFY(month >= 1 && month <= 12); if (month == 2) return is_leap_year(year) ? 29 : 28; bool is_long_month = (month == 1 || month == 3 || month == 5 || month == 7 || month == 8 || month == 10 || month == 12); return is_long_month ? 31 : 30; } unsigned day_of_week(int year, unsigned month, int day) { VERIFY(month >= 1 && month <= 12); constexpr Array seek_table = { 0, 3, 2, 5, 0, 3, 5, 1, 4, 6, 2, 4 }; if (month < 3) --year; return (year + year / 4 - year / 100 + year / 400 + seek_table[month - 1] + day) % 7; } Duration Duration::from_ticks(clock_t ticks, time_t ticks_per_second) { auto secs = ticks % ticks_per_second; i32 nsecs = 1'000'000'000 * (ticks - (ticks_per_second * secs)) / ticks_per_second; i32 extra_secs = sane_mod(nsecs, 1'000'000'000); return Duration::from_half_sanitized(secs, extra_secs, nsecs); } Duration Duration::from_timespec(const struct timespec& ts) { i32 nsecs = ts.tv_nsec; i32 extra_secs = sane_mod(nsecs, 1'000'000'000); return Duration::from_half_sanitized(ts.tv_sec, extra_secs, nsecs); } Duration Duration::from_timeval(const struct timeval& tv) { i32 usecs = tv.tv_usec; i32 extra_secs = sane_mod(usecs, 1'000'000); VERIFY(0 <= usecs && usecs < 1'000'000); return Duration::from_half_sanitized(tv.tv_sec, extra_secs, usecs * 1'000); } i64 Duration::to_truncated_seconds() const { VERIFY(m_nanoseconds < 1'000'000'000); if (m_seconds < 0 && m_nanoseconds) { // Since m_seconds is negative, adding 1 can't possibly overflow return m_seconds + 1; } return m_seconds; } i64 Duration::to_truncated_milliseconds() const { VERIFY(m_nanoseconds < 1'000'000'000); Checked milliseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds); milliseconds *= 1'000; milliseconds += m_nanoseconds / 1'000'000; if (m_seconds < 0) { if (m_nanoseconds % 1'000'000 != 0) { // Does not overflow: milliseconds <= 1'999. milliseconds++; } // We dropped one second previously, put it back in now that we have handled the rounding. milliseconds -= 1'000; } if (!milliseconds.has_overflow()) return milliseconds.value(); return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL; } i64 Duration::to_truncated_microseconds() const { VERIFY(m_nanoseconds < 1'000'000'000); Checked microseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds); microseconds *= 1'000'000; microseconds += m_nanoseconds / 1'000; if (m_seconds < 0) { if (m_nanoseconds % 1'000 != 0) { // Does not overflow: microseconds <= 1'999'999. microseconds++; } // We dropped one second previously, put it back in now that we have handled the rounding. microseconds -= 1'000'000; } if (!microseconds.has_overflow()) return microseconds.value(); return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL; } i64 Duration::to_seconds() const { VERIFY(m_nanoseconds < 1'000'000'000); if (m_seconds >= 0 && m_nanoseconds) { Checked seconds(m_seconds); seconds++; return seconds.has_overflow() ? 0x7fff'ffff'ffff'ffffLL : seconds.value(); } return m_seconds; } i64 Duration::to_milliseconds() const { VERIFY(m_nanoseconds < 1'000'000'000); Checked milliseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds); milliseconds *= 1'000; milliseconds += m_nanoseconds / 1'000'000; if (m_seconds >= 0 && m_nanoseconds % 1'000'000 != 0) milliseconds++; if (m_seconds < 0) { // We dropped one second previously, put it back in now that we have handled the rounding. milliseconds -= 1'000; } if (!milliseconds.has_overflow()) return milliseconds.value(); return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL; } i64 Duration::to_microseconds() const { VERIFY(m_nanoseconds < 1'000'000'000); Checked microseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds); microseconds *= 1'000'000; microseconds += m_nanoseconds / 1'000; if (m_seconds >= 0 && m_nanoseconds % 1'000 != 0) microseconds++; if (m_seconds < 0) { // We dropped one second previously, put it back in now that we have handled the rounding. microseconds -= 1'000'000; } if (!microseconds.has_overflow()) return microseconds.value(); return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL; } i64 Duration::to_nanoseconds() const { VERIFY(m_nanoseconds < 1'000'000'000); Checked nanoseconds((m_seconds < 0) ? m_seconds + 1 : m_seconds); nanoseconds *= 1'000'000'000; nanoseconds += m_nanoseconds; if (m_seconds < 0) { // We dropped one second previously, put it back in now that we have handled the rounding. nanoseconds -= 1'000'000'000; } if (!nanoseconds.has_overflow()) return nanoseconds.value(); return m_seconds < 0 ? -0x8000'0000'0000'0000LL : 0x7fff'ffff'ffff'ffffLL; } timespec Duration::to_timespec() const { VERIFY(m_nanoseconds < 1'000'000'000); return { static_cast(m_seconds), static_cast(m_nanoseconds) }; } timeval Duration::to_timeval() const { VERIFY(m_nanoseconds < 1'000'000'000); // This is done because winsock defines tv_sec and tv_usec as long, and Linux64 as long int. using sec_type = decltype(declval().tv_sec); using usec_type = decltype(declval().tv_usec); return { static_cast(m_seconds), static_cast(m_nanoseconds) / 1000 }; } Duration Duration::from_half_sanitized(i64 seconds, i32 extra_seconds, u32 nanoseconds) { VERIFY(nanoseconds < 1'000'000'000); if ((seconds <= 0 && extra_seconds > 0) || (seconds >= 0 && extra_seconds < 0)) { // Opposite signs mean that we can definitely add them together without fear of overflowing i64: seconds += extra_seconds; extra_seconds = 0; } // Now the only possible way to become invalid is overflowing i64 towards positive infinity: if (Checked::addition_would_overflow(seconds, extra_seconds)) { if (seconds < 0) { return Duration::min(); } else { return Duration::max(); } } return Duration { seconds + extra_seconds, nanoseconds }; } namespace { #if defined(AK_OS_WINDOWS) # define CLOCK_REALTIME 0 # define CLOCK_MONOTONIC 1 // Ref https://stackoverflow.com/a/51974214 Duration now_time_from_filetime() { FILETIME ft {}; GetSystemTimeAsFileTime(&ft); // Units: 1 LSB == 100 ns ULARGE_INTEGER hundreds_of_nanos { .LowPart = ft.dwLowDateTime, .HighPart = ft.dwHighDateTime }; constexpr u64 num_hundred_nanos_per_sec = 1000ULL * 1000ULL * 10ULL; constexpr u64 seconds_from_jan_1601_to_jan_1970 = 11644473600ULL; // To convert to Unix Epoch, subtract the number of hundred nanosecond intervals from Jan 1, 1601 to Jan 1, 1970. hundreds_of_nanos.QuadPart -= (seconds_from_jan_1601_to_jan_1970 * num_hundred_nanos_per_sec); return Duration::from_nanoseconds(hundreds_of_nanos.QuadPart * 100); } Duration now_time_from_query_performance_counter() { static LARGE_INTEGER ticks_per_second; // FIXME: Limit to microseconds for now, but could probably use nanos? static float ticks_per_microsecond; if (ticks_per_second.QuadPart == 0) { QueryPerformanceFrequency(&ticks_per_second); VERIFY(ticks_per_second.QuadPart != 0); ticks_per_microsecond = static_cast(ticks_per_second.QuadPart) / 1'000'000.0F; } LARGE_INTEGER now_time {}; QueryPerformanceCounter(&now_time); return Duration::from_microseconds(static_cast(now_time.QuadPart / ticks_per_microsecond)); } Duration now_time_from_clock(int clock_id) { if (clock_id == CLOCK_REALTIME) return now_time_from_filetime(); return now_time_from_query_performance_counter(); } #else static Duration now_time_from_clock(clockid_t clock_id) { timespec now_spec {}; ::clock_gettime(clock_id, &now_spec); return Duration::from_timespec(now_spec); } #endif } MonotonicTime MonotonicTime::now() { return MonotonicTime { now_time_from_clock(CLOCK_MONOTONIC) }; } MonotonicTime MonotonicTime::now_coarse() { return MonotonicTime { now_time_from_clock(CLOCK_MONOTONIC_COARSE) }; } UnixDateTime UnixDateTime::now() { return UnixDateTime { now_time_from_clock(CLOCK_REALTIME) }; } UnixDateTime UnixDateTime::now_coarse() { return UnixDateTime { now_time_from_clock(CLOCK_REALTIME_COARSE) }; } }