/* * Copyright (c) 2018-2023, Andreas Kling * Copyright (c) 2023, Timon Kruiper * * SPDX-License-Identifier: BSD-2-Clause */ #include #include #include #include #include #include #include #include #include #include #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION # include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace Kernel { static void create_signal_trampoline(); extern ProcessID g_init_pid; RecursiveSpinlock g_profiling_lock {}; static Atomic next_pid; static Singleton> s_all_instances; READONLY_AFTER_INIT Memory::Region* g_signal_trampoline_region; static Singleton>> s_hostname; MutexProtected>& hostname() { return *s_hostname; } SpinlockProtected& Process::all_instances() { return *s_all_instances; } ErrorOr Process::for_each_in_same_jail(Function(Process&)> callback) { return Process::current().m_jail_process_list.with([&](auto const& list_ptr) -> ErrorOr { ErrorOr result {}; if (list_ptr) { list_ptr->attached_processes().with([&](auto const& list) { for (auto& process : list) { result = callback(process); if (result.is_error()) break; } }); return result; } all_instances().with([&](auto const& list) { for (auto& process : list) { result = callback(process); if (result.is_error()) break; } }); return result; }); } ErrorOr Process::for_each_child_in_same_jail(Function(Process&)> callback) { ProcessID my_pid = pid(); return m_jail_process_list.with([&](auto const& list_ptr) -> ErrorOr { ErrorOr result {}; if (list_ptr) { list_ptr->attached_processes().with([&](auto const& list) { for (auto& process : list) { if (process.ppid() == my_pid || process.has_tracee_thread(pid())) result = callback(process); if (result.is_error()) break; } }); return result; } all_instances().with([&](auto const& list) { for (auto& process : list) { if (process.ppid() == my_pid || process.has_tracee_thread(pid())) result = callback(process); if (result.is_error()) break; } }); return result; }); } ErrorOr Process::for_each_in_pgrp_in_same_jail(ProcessGroupID pgid, Function(Process&)> callback) { return m_jail_process_list.with([&](auto const& list_ptr) -> ErrorOr { ErrorOr result {}; if (list_ptr) { list_ptr->attached_processes().with([&](auto const& list) { for (auto& process : list) { if (!process.is_dead() && process.pgid() == pgid) result = callback(process); if (result.is_error()) break; } }); return result; } all_instances().with([&](auto const& list) { for (auto& process : list) { if (!process.is_dead() && process.pgid() == pgid) result = callback(process); if (result.is_error()) break; } }); return result; }); } ProcessID Process::allocate_pid() { // Overflow is UB, and negative PIDs wreck havoc. // TODO: Handle PID overflow // For example: Use an Atomic, mask the most significant bit, // retry if PID is already taken as a PID, taken as a TID, // takes as a PGID, taken as a SID, or zero. return next_pid.fetch_add(1, AK::MemoryOrder::memory_order_acq_rel); } UNMAP_AFTER_INIT void Process::initialize() { next_pid.store(0, AK::MemoryOrder::memory_order_release); // Note: This is called before scheduling is initialized, and before APs are booted. // So we can "safely" bypass the lock here. reinterpret_cast&>(hostname()) = KString::must_create("courage"sv); create_signal_trampoline(); } void Process::kill_threads_except_self() { InterruptDisabler disabler; if (thread_count() <= 1) return; auto* current_thread = Thread::current(); for_each_thread([&](Thread& thread) { if (&thread == current_thread) return; if (auto state = thread.state(); state == Thread::State::Dead || state == Thread::State::Dying) return; // We need to detach this thread in case it hasn't been joined thread.detach(); thread.set_should_die(); }); u32 dropped_lock_count = 0; if (big_lock().force_unlock_exclusive_if_locked(dropped_lock_count) != LockMode::Unlocked) dbgln("Process {} big lock had {} locks", *this, dropped_lock_count); } void Process::kill_all_threads() { for_each_thread([&](Thread& thread) { // We need to detach this thread in case it hasn't been joined thread.detach(); thread.set_should_die(); }); } void Process::register_new(Process& process) { // Note: this is essentially the same like process->ref() NonnullRefPtr const new_process = process; all_instances().with([&](auto& list) { list.prepend(process); }); } ErrorOr Process::create_user_process(StringView path, UserID uid, GroupID gid, Vector> arguments, Vector> environment, RefPtr tty) { auto parts = path.split_view('/'); if (arguments.is_empty()) { auto last_part = TRY(KString::try_create(parts.last())); TRY(arguments.try_append(move(last_part))); } auto path_string = TRY(KString::try_create(path)); auto name = TRY(KString::try_create(parts.last())); auto [process, first_thread] = TRY(Process::create(move(name), uid, gid, ProcessID(0), false, VirtualFileSystem::the().root_custody(), nullptr, tty)); TRY(process->m_fds.with_exclusive([&](auto& fds) -> ErrorOr { TRY(fds.try_resize(Process::OpenFileDescriptions::max_open())); auto& device_to_use_as_tty = tty ? (CharacterDevice&)*tty : DeviceManagement::the().null_device(); auto description = TRY(device_to_use_as_tty.open(O_RDWR)); auto setup_description = [&](int fd) { fds.m_fds_metadatas[fd].allocate(); fds[fd].set(*description); }; setup_description(0); setup_description(1); setup_description(2); return {}; })); Thread* new_main_thread = nullptr; InterruptsState previous_interrupts_state = InterruptsState::Enabled; TRY(process->exec(move(path_string), move(arguments), move(environment), new_main_thread, previous_interrupts_state)); register_new(*process); // NOTE: All user processes have a leaked ref on them. It's balanced by Thread::WaitBlockerSet::finalize(). process->ref(); { SpinlockLocker lock(g_scheduler_lock); new_main_thread->set_state(Thread::State::Runnable); } return ProcessAndFirstThread { move(process), move(first_thread) }; } ErrorOr Process::create_kernel_process(NonnullOwnPtr name, void (*entry)(void*), void* entry_data, u32 affinity, RegisterProcess do_register) { auto process_and_first_thread = TRY(Process::create(move(name), UserID(0), GroupID(0), ProcessID(0), true)); auto& process = *process_and_first_thread.process; auto& thread = *process_and_first_thread.first_thread; thread.regs().set_entry_function((FlatPtr)entry, (FlatPtr)entry_data); if (do_register == RegisterProcess::Yes) register_new(process); SpinlockLocker lock(g_scheduler_lock); thread.set_affinity(affinity); thread.set_state(Thread::State::Runnable); return process_and_first_thread; } void Process::protect_data() { m_protected_data_refs.unref([&]() { MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values_do_not_access_directly }, false); }); } void Process::unprotect_data() { m_protected_data_refs.ref([&]() { MM.set_page_writable_direct(VirtualAddress { &this->m_protected_values_do_not_access_directly }, true); }); } ErrorOr Process::create(NonnullOwnPtr name, UserID uid, GroupID gid, ProcessID ppid, bool is_kernel_process, RefPtr current_directory, RefPtr executable, RefPtr tty, Process* fork_parent) { auto unveil_tree = UnveilNode { TRY(KString::try_create("/"sv)), UnveilMetadata(TRY(KString::try_create("/"sv))) }; auto exec_unveil_tree = UnveilNode { TRY(KString::try_create("/"sv)), UnveilMetadata(TRY(KString::try_create("/"sv))) }; auto credentials = TRY(Credentials::create(uid, gid, uid, gid, uid, gid, {}, fork_parent ? fork_parent->sid() : 0, fork_parent ? fork_parent->pgid() : 0)); auto process = TRY(adopt_nonnull_ref_or_enomem(new (nothrow) Process(move(name), move(credentials), ppid, is_kernel_process, move(current_directory), move(executable), tty, move(unveil_tree), move(exec_unveil_tree), kgettimeofday()))); OwnPtr new_address_space; if (fork_parent) { TRY(fork_parent->address_space().with([&](auto& parent_address_space) -> ErrorOr { new_address_space = TRY(Memory::AddressSpace::try_create(*process, parent_address_space.ptr())); return {}; })); } else { new_address_space = TRY(Memory::AddressSpace::try_create(*process, nullptr)); } auto first_thread = TRY(process->attach_resources(new_address_space.release_nonnull(), fork_parent)); return ProcessAndFirstThread { move(process), move(first_thread) }; } Process::Process(NonnullOwnPtr name, NonnullRefPtr credentials, ProcessID ppid, bool is_kernel_process, RefPtr current_directory, RefPtr executable, RefPtr tty, UnveilNode unveil_tree, UnveilNode exec_unveil_tree, UnixDateTime creation_time) : m_name(move(name)) , m_is_kernel_process(is_kernel_process) , m_executable(move(executable)) , m_current_directory(move(current_directory)) , m_creation_time(creation_time) , m_unveil_data(move(unveil_tree)) , m_exec_unveil_data(move(exec_unveil_tree)) , m_wait_blocker_set(*this) { // Ensure that we protect the process data when exiting the constructor. with_mutable_protected_data([&](auto& protected_data) { protected_data.pid = allocate_pid(); protected_data.ppid = ppid; protected_data.credentials = move(credentials); protected_data.tty = move(tty); }); if constexpr (PROCESS_DEBUG) { this->name().with([&](auto& process_name) { dbgln("Created new process {}({})", process_name->view(), this->pid().value()); }); } } ErrorOr> Process::attach_resources(NonnullOwnPtr&& preallocated_space, Process* fork_parent) { m_space.with([&](auto& space) { space = move(preallocated_space); }); auto create_first_thread = [&] { if (fork_parent) { // NOTE: fork() doesn't clone all threads; the thread that called fork() becomes the only thread in the new process. return Thread::current()->clone(*this); } // NOTE: This non-forked code path is only taken when the kernel creates a process "manually" (at boot.) return Thread::create(*this); }; auto first_thread = TRY(create_first_thread()); if (!fork_parent) { // FIXME: Figure out if this is really necessary. first_thread->detach(); } // This is not actually explicitly verified by any official documentation, // but it's not listed anywhere as being cleared, and rsync expects it to work like this. if (fork_parent) m_signal_action_data = fork_parent->m_signal_action_data; return first_thread; } Process::~Process() { unprotect_data(); VERIFY(thread_count() == 0); // all threads should have been finalized PerformanceManager::add_process_exit_event(*this); } // Make sure the compiler doesn't "optimize away" this function: extern void signal_trampoline_dummy() __attribute__((used)); void signal_trampoline_dummy() { #if ARCH(X86_64) // The trampoline preserves the current rax, pushes the signal code and // then calls the signal handler. We do this because, when interrupting a // blocking syscall, that syscall may return some special error code in eax; // This error code would likely be overwritten by the signal handler, so it's // necessary to preserve it here. constexpr static auto offset_to_first_register_slot = sizeof(__ucontext) + sizeof(siginfo) + sizeof(FPUState) + 3 * sizeof(FlatPtr); asm( ".intel_syntax noprefix\n" ".globl asm_signal_trampoline\n" "asm_signal_trampoline:\n" // stack state: 0, ucontext, signal_info (alignment = 16), fpu_state (alignment = 16), ucontext*, siginfo*, signal, handler // Pop the handler into rcx "pop rcx\n" // save handler // we have to save rax 'cause it might be the return value from a syscall "mov [rsp+%P1], rax\n" // pop signal number into rdi (first param) "pop rdi\n" // pop siginfo* into rsi (second param) "pop rsi\n" // pop ucontext* into rdx (third param) "pop rdx\n" // Note that the stack is currently aligned to 16 bytes as we popped the extra entries above. // call the signal handler "call rcx\n" // Current stack state is just saved_rax, ucontext, signal_info, fpu_state. // syscall SC_sigreturn "mov rax, %P0\n" "syscall\n" ".globl asm_signal_trampoline_end\n" "asm_signal_trampoline_end:\n" ".att_syntax" : : "i"(Syscall::SC_sigreturn), "i"(offset_to_first_register_slot)); #elif ARCH(AARCH64) constexpr static auto offset_to_first_register_slot = align_up_to(sizeof(__ucontext) + sizeof(siginfo) + sizeof(FPUState) + 3 * sizeof(FlatPtr), 16); asm( ".global asm_signal_trampoline\n" "asm_signal_trampoline:\n" // stack state: 0, ucontext, signal_info (alignment = 16), fpu_state (alignment = 16), ucontext*, siginfo*, signal, handler // Load the handler address into x3. "ldr x3, [sp, #0]\n" // Store x0 (return value from a syscall) into the register slot, such that we can return the correct value in sys$sigreturn. "str x0, [sp, %[offset_to_first_register_slot]]\n" // Load the signal number into the first argument. "ldr x0, [sp, #8]\n" // Load a pointer to the signal_info structure into the second argument. "ldr x1, [sp, #16]\n" // Load a pointer to the ucontext into the third argument. "ldr x2, [sp, #24]\n" // Pop the values off the stack. "add sp, sp, 32\n" // Call the signal handler. "blr x3\n" // Call sys$sigreturn. "mov x8, %[sigreturn_syscall_number]\n" "svc #0\n" // We should never return, so trap if we do return. "brk #0\n" "\n" ".global asm_signal_trampoline_end\n" "asm_signal_trampoline_end: \n" ::[sigreturn_syscall_number] "i"(Syscall::SC_sigreturn), [offset_to_first_register_slot] "i"(offset_to_first_register_slot)); #else # error Unknown architecture #endif } extern "C" char const asm_signal_trampoline[]; extern "C" char const asm_signal_trampoline_end[]; void create_signal_trampoline() { // NOTE: We leak this region. g_signal_trampoline_region = MM.allocate_kernel_region(PAGE_SIZE, "Signal trampolines"sv, Memory::Region::Access::ReadWrite).release_value().leak_ptr(); g_signal_trampoline_region->set_syscall_region(true); size_t trampoline_size = asm_signal_trampoline_end - asm_signal_trampoline; u8* code_ptr = (u8*)g_signal_trampoline_region->vaddr().as_ptr(); memcpy(code_ptr, asm_signal_trampoline, trampoline_size); g_signal_trampoline_region->set_writable(false); g_signal_trampoline_region->remap(); } void Process::crash(int signal, Optional regs, bool out_of_memory) { VERIFY(!is_dead()); VERIFY(&Process::current() == this); auto ip = regs.has_value() ? regs->ip() : 0; if (out_of_memory) { dbgln("\033[31;1mOut of memory\033[m, killing: {}", *this); } else { if (ip >= kernel_load_base && g_kernel_symbols_available) { auto const* symbol = symbolicate_kernel_address(ip); dbgln("\033[31;1m{:p} {} +{}\033[0m\n", ip, (symbol ? symbol->name : "(k?)"), (symbol ? ip - symbol->address : 0)); } else { dbgln("\033[31;1m{:p} (?)\033[0m\n", ip); } #if ARCH(X86_64) constexpr bool userspace_backtrace = false; #elif ARCH(AARCH64) constexpr bool userspace_backtrace = true; #else # error "Unknown architecture" #endif if constexpr (userspace_backtrace) { dbgln("Userspace backtrace:"); auto bp = regs.has_value() ? regs->bp() : 0; dump_backtrace_from_base_pointer(bp); } dbgln("Kernel backtrace:"); dump_backtrace(); } with_mutable_protected_data([&](auto& protected_data) { protected_data.termination_signal = signal; }); set_should_generate_coredump(!out_of_memory); if constexpr (DUMP_REGIONS_ON_CRASH) { address_space().with([](auto& space) { space->dump_regions(); }); } VERIFY(is_user_process()); die(); // We can not return from here, as there is nowhere // to unwind to, so die right away. Thread::current()->die_if_needed(); VERIFY_NOT_REACHED(); } RefPtr Process::from_pid_in_same_jail(ProcessID pid) { return Process::current().m_jail_process_list.with([&](auto const& list_ptr) -> RefPtr { if (list_ptr) { return list_ptr->attached_processes().with([&](auto const& list) -> RefPtr { for (auto& process : list) { if (process.pid() == pid) { return process; } } return {}; }); } return all_instances().with([&](auto const& list) -> RefPtr { for (auto& process : list) { if (process.pid() == pid) { return process; } } return {}; }); }); } RefPtr Process::from_pid_ignoring_jails(ProcessID pid) { return all_instances().with([&](auto const& list) -> RefPtr { for (auto const& process : list) { if (process.pid() == pid) return &process; } return {}; }); } Process::OpenFileDescriptionAndFlags const* Process::OpenFileDescriptions::get_if_valid(size_t i) const { if (m_fds_metadatas.size() <= i) return nullptr; if (auto const& metadata = m_fds_metadatas[i]; metadata.is_valid()) return &metadata; return nullptr; } Process::OpenFileDescriptionAndFlags* Process::OpenFileDescriptions::get_if_valid(size_t i) { if (m_fds_metadatas.size() <= i) return nullptr; if (auto& metadata = m_fds_metadatas[i]; metadata.is_valid()) return &metadata; return nullptr; } Process::OpenFileDescriptionAndFlags const& Process::OpenFileDescriptions::at(size_t i) const { VERIFY(m_fds_metadatas[i].is_allocated()); return m_fds_metadatas[i]; } Process::OpenFileDescriptionAndFlags& Process::OpenFileDescriptions::at(size_t i) { VERIFY(m_fds_metadatas[i].is_allocated()); return m_fds_metadatas[i]; } ErrorOr> Process::OpenFileDescriptions::open_file_description(int fd) const { if (fd < 0) return EBADF; if (static_cast(fd) >= m_fds_metadatas.size()) return EBADF; RefPtr description = m_fds_metadatas[fd].description(); if (!description) return EBADF; return description.release_nonnull(); } void Process::OpenFileDescriptions::enumerate(Function callback) const { for (auto const& file_description_metadata : m_fds_metadatas) { callback(file_description_metadata); } } ErrorOr Process::OpenFileDescriptions::try_enumerate(Function(OpenFileDescriptionAndFlags const&)> callback) const { for (auto const& file_description_metadata : m_fds_metadatas) { TRY(callback(file_description_metadata)); } return {}; } void Process::OpenFileDescriptions::change_each(Function callback) { for (auto& file_description_metadata : m_fds_metadatas) { callback(file_description_metadata); } } size_t Process::OpenFileDescriptions::open_count() const { size_t count = 0; enumerate([&](auto& file_description_metadata) { if (file_description_metadata.is_valid()) ++count; }); return count; } ErrorOr Process::OpenFileDescriptions::allocate(int first_candidate_fd) { for (size_t i = first_candidate_fd; i < max_open(); ++i) { if (!m_fds_metadatas[i].is_allocated()) { m_fds_metadatas[i].allocate(); return Process::ScopedDescriptionAllocation { static_cast(i), &m_fds_metadatas[i] }; } } return EMFILE; } UnixDateTime kgettimeofday() { return TimeManagement::now(); } siginfo_t Process::wait_info() const { auto credentials = this->credentials(); siginfo_t siginfo {}; siginfo.si_signo = SIGCHLD; siginfo.si_pid = pid().value(); siginfo.si_uid = credentials->uid().value(); with_protected_data([&](auto& protected_data) { if (protected_data.termination_signal != 0) { siginfo.si_status = protected_data.termination_signal; siginfo.si_code = CLD_KILLED; } else { siginfo.si_status = protected_data.termination_status; siginfo.si_code = CLD_EXITED; } }); return siginfo; } NonnullRefPtr Process::current_directory() { return m_current_directory.with([&](auto& current_directory) -> NonnullRefPtr { if (!current_directory) current_directory = VirtualFileSystem::the().root_custody(); return *current_directory; }); } ErrorOr> Process::get_syscall_path_argument(Userspace user_path, size_t path_length) { if (path_length == 0) return EINVAL; if (path_length > PATH_MAX) return ENAMETOOLONG; return try_copy_kstring_from_user(user_path, path_length); } ErrorOr> Process::get_syscall_path_argument(Syscall::StringArgument const& path) { Userspace path_characters((FlatPtr)path.characters); return get_syscall_path_argument(path_characters, path.length); } ErrorOr Process::dump_core() { VERIFY(is_dumpable()); VERIFY(should_generate_coredump()); dbgln("Generating coredump for pid: {}", pid().value()); auto coredump_directory_path = TRY(Coredump::directory_path().with([&](auto& coredump_directory_path) -> ErrorOr> { if (coredump_directory_path) return KString::try_create(coredump_directory_path->view()); return KString::try_create(""sv); })); if (coredump_directory_path->view() == ""sv) { dbgln("Generating coredump for pid {} failed because coredump directory was not set.", pid().value()); return {}; } auto coredump_path = TRY(name().with([&](auto& process_name) { return KString::formatted("{}/{}_{}_{}", coredump_directory_path->view(), process_name->view(), pid().value(), kgettimeofday().seconds_since_epoch()); })); auto coredump = TRY(Coredump::try_create(*this, coredump_path->view())); return coredump->write(); } ErrorOr Process::dump_perfcore() { VERIFY(is_dumpable()); VERIFY(m_perf_event_buffer); dbgln("Generating perfcore for pid: {}", pid().value()); // Try to generate a filename which isn't already used. auto base_filename = TRY(name().with([&](auto& process_name) { return KString::formatted("{}_{}", process_name->view(), pid().value()); })); auto perfcore_filename = TRY(KString::formatted("{}.profile", base_filename)); RefPtr description; auto credentials = this->credentials(); for (size_t attempt = 1; attempt <= 10; ++attempt) { auto description_or_error = VirtualFileSystem::the().open(*this, credentials, perfcore_filename->view(), O_CREAT | O_EXCL, 0400, current_directory(), UidAndGid { 0, 0 }); if (!description_or_error.is_error()) { description = description_or_error.release_value(); break; } perfcore_filename = TRY(KString::formatted("{}.{}.profile", base_filename, attempt)); } if (!description) { dbgln("Failed to generate perfcore for pid {}: Could not generate filename for the perfcore file.", pid().value()); return EEXIST; } auto builder = TRY(KBufferBuilder::try_create()); TRY(m_perf_event_buffer->to_json(builder)); auto json = builder.build(); if (!json) { dbgln("Failed to generate perfcore for pid {}: Could not allocate buffer.", pid().value()); return ENOMEM; } auto json_buffer = UserOrKernelBuffer::for_kernel_buffer(json->data()); TRY(description->write(json_buffer, json->size())); dbgln("Wrote perfcore for pid {} to {}", pid().value(), perfcore_filename); return {}; } void Process::finalize() { VERIFY(Thread::current() == g_finalizer); dbgln_if(PROCESS_DEBUG, "Finalizing process {}", *this); if (veil_state() == VeilState::Dropped) { name().with([&](auto& process_name) { dbgln("\x1b[01;31mProcess '{}' exited with the veil left open\x1b[0m", process_name->view()); }); } if (g_init_pid != 0 && pid() == g_init_pid) PANIC("Init process quit unexpectedly. Exit code: {}", termination_status()); if (is_dumpable()) { if (m_should_generate_coredump) { auto result = dump_core(); if (result.is_error()) { dmesgln("Failed to write coredump for pid {}: {}", pid(), result.error()); } } if (m_perf_event_buffer) { auto result = dump_perfcore(); if (result.is_error()) dmesgln("Failed to write perfcore for pid {}: {}", pid(), result.error()); TimeManagement::the().disable_profile_timer(); } } m_threads_for_coredump.clear(); m_alarm_timer.with([&](auto& timer) { if (timer) TimerQueue::the().cancel_timer(timer.release_nonnull()); }); m_fds.with_exclusive([](auto& fds) { fds.clear(); }); with_mutable_protected_data([&](auto& protected_data) { protected_data.tty = nullptr; }); m_executable.with([](auto& executable) { executable = nullptr; }); m_attached_jail.with([](auto& jail) { if (jail) jail->detach({}); jail = nullptr; }); m_arguments.clear(); m_environment.clear(); m_state.store(State::Dead, AK::MemoryOrder::memory_order_release); { if (auto parent_process = Process::from_pid_ignoring_jails(ppid())) { if (parent_process->is_user_process() && (parent_process->m_signal_action_data[SIGCHLD].flags & SA_NOCLDWAIT) != SA_NOCLDWAIT) (void)parent_process->send_signal(SIGCHLD, this); } } if (!!ppid()) { if (auto parent = Process::from_pid_ignoring_jails(ppid())) { parent->m_ticks_in_user_for_dead_children += m_ticks_in_user + m_ticks_in_user_for_dead_children; parent->m_ticks_in_kernel_for_dead_children += m_ticks_in_kernel + m_ticks_in_kernel_for_dead_children; } } unblock_waiters(Thread::WaitBlocker::UnblockFlags::Terminated); m_space.with([](auto& space) { space->remove_all_regions({}); }); VERIFY(ref_count() > 0); // WaitBlockerSet::finalize will be in charge of dropping the last // reference if there are still waiters around, or whenever the last // waitable states are consumed. Unless there is no parent around // anymore, in which case we'll just drop it right away. m_wait_blocker_set.finalize(); } void Process::disowned_by_waiter(Process& process) { m_wait_blocker_set.disowned_by_waiter(process); } void Process::unblock_waiters(Thread::WaitBlocker::UnblockFlags flags, u8 signal) { RefPtr waiter_process; if (auto* my_tracer = tracer()) waiter_process = Process::from_pid_ignoring_jails(my_tracer->tracer_pid()); else waiter_process = Process::from_pid_ignoring_jails(ppid()); if (waiter_process) waiter_process->m_wait_blocker_set.unblock(*this, flags, signal); } void Process::remove_from_secondary_lists() { m_jail_process_list.with([this](auto& list_ptr) { if (list_ptr) { list_ptr->attached_processes().with([&](auto& list) { list.remove(*this); }); } }); } void Process::die() { auto expected = State::Running; if (!m_state.compare_exchange_strong(expected, State::Dying, AK::memory_order_acquire)) { // It's possible that another thread calls this at almost the same time // as we can't always instantly kill other threads (they may be blocked) // So if we already were called then other threads should stop running // momentarily and we only really need to service the first thread return; } // Let go of the TTY, otherwise a slave PTY may keep the master PTY from // getting an EOF when the last process using the slave PTY dies. // If the master PTY owner relies on an EOF to know when to wait() on a // slave owner, we have to allow the PTY pair to be torn down. with_mutable_protected_data([&](auto& protected_data) { protected_data.tty = nullptr; }); VERIFY(m_threads_for_coredump.is_empty()); for_each_thread([&](auto& thread) { auto result = m_threads_for_coredump.try_append(thread); if (result.is_error()) dbgln("Failed to add thread {} to coredump due to OOM", thread.tid()); }); all_instances().with([&](auto const& list) { for (auto it = list.begin(); it != list.end();) { auto& process = *it; ++it; if (process.has_tracee_thread(pid())) { if constexpr (PROCESS_DEBUG) { process.name().with([&](auto& process_name) { name().with([&](auto& name) { dbgln("Process {} ({}) is attached by {} ({}) which will exit", process_name->view(), process.pid(), name->view(), pid()); }); }); } process.stop_tracing(); auto err = process.send_signal(SIGSTOP, this); if (err.is_error()) { process.name().with([&](auto& process_name) { dbgln("Failed to send the SIGSTOP signal to {} ({})", process_name->view(), process.pid()); }); } } } }); kill_all_threads(); #ifdef ENABLE_KERNEL_COVERAGE_COLLECTION KCOVDevice::free_process(); #endif } void Process::terminate_due_to_signal(u8 signal) { VERIFY_INTERRUPTS_DISABLED(); VERIFY(signal < NSIG); VERIFY(&Process::current() == this); dbgln("Terminating {} due to signal {}", *this, signal); with_mutable_protected_data([&](auto& protected_data) { protected_data.termination_status = 0; protected_data.termination_signal = signal; }); die(); } ErrorOr Process::send_signal(u8 signal, Process* sender) { VERIFY(is_user_process()); // Try to send it to the "obvious" main thread: auto receiver_thread = Thread::from_tid(pid().value()); // If the main thread has died, there may still be other threads: if (!receiver_thread) { // The first one should be good enough. // Neither kill(2) nor kill(3) specify any selection procedure. for_each_thread([&receiver_thread](Thread& thread) -> IterationDecision { receiver_thread = &thread; return IterationDecision::Break; }); } if (receiver_thread) { receiver_thread->send_signal(signal, sender); return {}; } return ESRCH; } ErrorOr> Process::create_kernel_thread(void (*entry)(void*), void* entry_data, u32 priority, NonnullOwnPtr name, u32 affinity, bool joinable) { VERIFY((priority >= THREAD_PRIORITY_MIN) && (priority <= THREAD_PRIORITY_MAX)); // FIXME: Do something with guard pages? auto thread = TRY(Thread::create(*this)); thread->set_name(move(name)); thread->set_affinity(affinity); thread->set_priority(priority); if (!joinable) thread->detach(); auto& regs = thread->regs(); regs.set_ip((FlatPtr)entry); regs.set_sp((FlatPtr)entry_data); // entry function argument is expected to be in the SP register SpinlockLocker lock(g_scheduler_lock); thread->set_state(Thread::State::Runnable); return thread; } void Process::OpenFileDescriptionAndFlags::clear() { m_description = nullptr; m_flags = 0; } void Process::OpenFileDescriptionAndFlags::set(NonnullRefPtr description, u32 flags) { m_description = move(description); m_flags = flags; } RefPtr Process::tty() { return with_protected_data([&](auto& protected_data) { return protected_data.tty; }); } RefPtr Process::tty() const { return with_protected_data([&](auto& protected_data) { return protected_data.tty; }); } void Process::set_tty(RefPtr new_tty) { with_mutable_protected_data([&](auto& protected_data) { protected_data.tty = move(new_tty); }); } ErrorOr Process::start_tracing_from(ProcessID tracer) { m_tracer = TRY(ThreadTracer::try_create(tracer)); return {}; } void Process::stop_tracing() { m_tracer = nullptr; } void Process::tracer_trap(Thread& thread, RegisterState const& regs) { VERIFY(m_tracer.ptr()); m_tracer->set_regs(regs); thread.send_urgent_signal_to_self(SIGTRAP); } bool Process::create_perf_events_buffer_if_needed() { if (m_perf_event_buffer) return true; m_perf_event_buffer = PerformanceEventBuffer::try_create_with_size(4 * MiB); if (!m_perf_event_buffer) return false; return !m_perf_event_buffer->add_process(*this, ProcessEventType::Create).is_error(); } void Process::delete_perf_events_buffer() { if (m_perf_event_buffer) m_perf_event_buffer = nullptr; } bool Process::remove_thread(Thread& thread) { u32 thread_count_before = 0; thread_list().with([&](auto& thread_list) { thread_list.remove(thread); with_mutable_protected_data([&](auto& protected_data) { thread_count_before = protected_data.thread_count.fetch_sub(1, AK::MemoryOrder::memory_order_acq_rel); VERIFY(thread_count_before != 0); }); }); return thread_count_before == 1; } bool Process::add_thread(Thread& thread) { bool is_first = false; thread_list().with([&](auto& thread_list) { thread_list.append(thread); with_mutable_protected_data([&](auto& protected_data) { is_first = protected_data.thread_count.fetch_add(1, AK::MemoryOrder::memory_order_relaxed) == 0; }); }); return is_first; } ErrorOr Process::set_coredump_property(NonnullOwnPtr key, NonnullOwnPtr value) { return m_coredump_properties.with([&](auto& coredump_properties) -> ErrorOr { // Write it into the first available property slot. for (auto& slot : coredump_properties) { if (slot.key) continue; slot.key = move(key); slot.value = move(value); return {}; } return ENOBUFS; }); } ErrorOr Process::try_set_coredump_property(StringView key, StringView value) { auto key_kstring = TRY(KString::try_create(key)); auto value_kstring = TRY(KString::try_create(value)); return set_coredump_property(move(key_kstring), move(value_kstring)); } static constexpr StringView to_string(Pledge promise) { #define __ENUMERATE_PLEDGE_PROMISE(x) \ case Pledge::x: \ return #x##sv; switch (promise) { ENUMERATE_PLEDGE_PROMISES } #undef __ENUMERATE_PLEDGE_PROMISE VERIFY_NOT_REACHED(); } ErrorOr Process::require_no_promises() const { if (!has_promises()) return {}; dbgln("Has made a promise"); Thread::current()->set_promise_violation_pending(true); return EPROMISEVIOLATION; } ErrorOr Process::require_promise(Pledge promise) { if (!has_promises()) return {}; if (has_promised(promise)) return {}; dbgln("Has not pledged {}", to_string(promise)); Thread::current()->set_promise_violation_pending(true); (void)try_set_coredump_property("pledge_violation"sv, to_string(promise)); return EPROMISEVIOLATION; } NonnullRefPtr Process::credentials() const { return with_protected_data([&](auto& protected_data) -> NonnullRefPtr { return *protected_data.credentials; }); } RefPtr Process::executable() { return m_executable.with([](auto& executable) { return executable; }); } RefPtr Process::executable() const { return m_executable.with([](auto& executable) { return executable; }); } ErrorOr> Process::custody_for_dirfd(int dirfd) { if (dirfd == AT_FDCWD) return current_directory(); auto description = TRY(open_file_description(dirfd)); if (!description->custody()) return EINVAL; if (!description->is_directory()) return ENOTDIR; return *description->custody(); } SpinlockProtected, LockRank::None> const& Process::name() const { return m_name; } void Process::set_name(NonnullOwnPtr name) { m_name.with([&](auto& this_name) { this_name = move(name); }); } }