/* * Copyright (c) 2021, Ali Mohammad Pur * * SPDX-License-Identifier: BSD-2-Clause */ #pragma once #include #include #include #include #if !defined(AK_OS_WINDOWS) # include #else extern "C" __declspec(dllimport) void* __stdcall VirtualAlloc(size_t dwSize, u32 flAllocationType, u32 flProtect); extern "C" __declspec(dllimport) bool __stdcall VirtualFree(void* lpAddress, size_t dwSize, u32 dwFreeType); # define MEM_COMMIT 0x00001000 # define PAGE_READWRITE 0x04 # define MEM_RELEASE 0x00008000 #endif namespace AK { template class BumpAllocator { public: BumpAllocator() { if constexpr (use_mmap) m_chunk_size = chunk_size; else m_chunk_size = kmalloc_good_size(chunk_size); } ~BumpAllocator() { deallocate_all(); } void* allocate(size_t size, size_t align) { VERIFY(size < m_chunk_size - sizeof(ChunkHeader)); if (!m_current_chunk) { if (!allocate_a_chunk()) return nullptr; } allocate_again:; VERIFY(m_current_chunk != 0); auto aligned_ptr = align_up_to(m_byte_offset_into_current_chunk + m_current_chunk, align); auto next_offset = aligned_ptr + size - m_current_chunk; if (next_offset > m_chunk_size) { if (!allocate_a_chunk()) return nullptr; goto allocate_again; } m_byte_offset_into_current_chunk = next_offset; return (void*)aligned_ptr; } void deallocate_all() { if (!m_head_chunk) return; // Note that 'cache_filled' is just an educated guess, and we don't rely on it. // If we determine 'cache_filled=true' and the cache becomes empty in the meantime, // then we haven't lost much; it was a close call anyway. // If we determine 'cache_filled=false' and the cache becomes full in the meantime, // then we'll end up with a different chunk to munmap(), no big difference. bool cache_filled = s_unused_allocation_cache.load(MemoryOrder::memory_order_relaxed); for_each_chunk([&](auto chunk) { if (!cache_filled) { cache_filled = true; (reinterpret_cast(chunk))->next_chunk = 0; chunk = s_unused_allocation_cache.exchange(chunk); if (!chunk) return; // The cache got filled in the meantime. Oh well, we have to call munmap() anyway. } if constexpr (use_mmap) { #if defined(AK_OS_WINDOWS) VirtualFree((LPVOID)chunk, m_chunk_size, MEM_RELEASE); #else munmap((void*)chunk, m_chunk_size); #endif } else { kfree_sized((void*)chunk, m_chunk_size); } }); } protected: template void for_each_chunk(TFn&& fn) { auto head_chunk = m_head_chunk; while (head_chunk) { auto& chunk_header = *reinterpret_cast(head_chunk); VERIFY(chunk_header.magic == chunk_magic); if (head_chunk == m_current_chunk) VERIFY(chunk_header.next_chunk == 0); auto next_chunk = chunk_header.next_chunk; fn(head_chunk); head_chunk = next_chunk; } } bool allocate_a_chunk() { // dbgln("Allocated {} entries in previous chunk and have {} unusable bytes", m_allocations_in_previous_chunk, m_chunk_size - m_byte_offset_into_current_chunk); // m_allocations_in_previous_chunk = 0; void* new_chunk = reinterpret_cast(s_unused_allocation_cache.exchange(0)); if (!new_chunk) { if constexpr (use_mmap) { #ifdef AK_OS_SERENITY new_chunk = serenity_mmap(nullptr, m_chunk_size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_RANDOMIZED | MAP_PRIVATE, 0, 0, m_chunk_size, "BumpAllocator Chunk"); #elif defined(AK_OS_WINDOWS) new_chunk = VirtualAlloc(NULL, m_chunk_size, MEM_COMMIT, PAGE_READWRITE); #else new_chunk = mmap(nullptr, m_chunk_size, PROT_READ | PROT_WRITE, MAP_ANONYMOUS | MAP_PRIVATE, -1, 0); #endif #if defined(AK_OS_WINDOWS) if (new_chunk == NULL) return false; #else if (new_chunk == MAP_FAILED) return false; #endif } else { new_chunk = kmalloc(m_chunk_size); if (!new_chunk) return false; } } auto& new_header = *reinterpret_cast(new_chunk); new_header.magic = chunk_magic; new_header.next_chunk = 0; m_byte_offset_into_current_chunk = sizeof(ChunkHeader); if (!m_head_chunk) { VERIFY(!m_current_chunk); m_head_chunk = reinterpret_cast(new_chunk); m_current_chunk = reinterpret_cast(new_chunk); return true; } VERIFY(m_current_chunk); auto& old_header = *reinterpret_cast(m_current_chunk); VERIFY(old_header.magic == chunk_magic); VERIFY(old_header.next_chunk == 0); old_header.next_chunk = reinterpret_cast(new_chunk); m_current_chunk = reinterpret_cast(new_chunk); return true; } constexpr static FlatPtr chunk_magic = explode_byte(0xdf); struct ChunkHeader { FlatPtr magic; FlatPtr next_chunk; }; FlatPtr m_head_chunk { 0 }; FlatPtr m_current_chunk { 0 }; size_t m_byte_offset_into_current_chunk { 0 }; size_t m_chunk_size { 0 }; static Atomic s_unused_allocation_cache; }; template class UniformBumpAllocator : protected BumpAllocator { using Allocator = BumpAllocator; public: UniformBumpAllocator() = default; ~UniformBumpAllocator() { destroy_all(); } template T* allocate(Args&&... args) { auto ptr = (T*)Allocator::allocate(sizeof(T), alignof(T)); if (!ptr) return nullptr; return new (ptr) T { forward(args)... }; } void deallocate_all() { destroy_all(); Allocator::deallocate_all(); } void destroy_all() { this->for_each_chunk([&](auto chunk) { auto base_ptr = align_up_to(chunk + sizeof(typename Allocator::ChunkHeader), alignof(T)); // Compute the offset of the first byte *after* this chunk: FlatPtr end_offset = base_ptr + this->m_chunk_size - chunk - sizeof(typename Allocator::ChunkHeader); if (chunk == this->m_current_chunk) end_offset = this->m_byte_offset_into_current_chunk; // Compute the offset of the first byte *after* the last valid object, in case the end of the chunk does not align with the end of an object: end_offset = (end_offset / sizeof(T)) * sizeof(T); for (; base_ptr - chunk < end_offset; base_ptr += sizeof(T)) reinterpret_cast(base_ptr)->~T(); }); } }; template inline Atomic BumpAllocator::s_unused_allocation_cache { 0 }; } #if USING_AK_GLOBALLY using AK::BumpAllocator; using AK::UniformBumpAllocator; #endif