/* * Copyright (c) 2018-2020, Andreas Kling * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include //#define LOG_EVERY_CONTEXT_SWITCH //#define SCHEDULER_DEBUG //#define SCHEDULER_RUNNABLE_DEBUG namespace Kernel { class SchedulerPerProcessorData { AK_MAKE_NONCOPYABLE(SchedulerPerProcessorData); AK_MAKE_NONMOVABLE(SchedulerPerProcessorData); public: SchedulerPerProcessorData() = default; WeakPtr m_pending_beneficiary; const char* m_pending_donate_reason { nullptr }; bool m_in_scheduler { true }; }; SchedulerData* g_scheduler_data; timeval g_timeofday; RecursiveSpinLock g_scheduler_lock; void Scheduler::init_thread(Thread& thread) { ASSERT(g_scheduler_data); g_scheduler_data->m_nonrunnable_threads.append(thread); } static u32 time_slice_for(const Thread& thread) { // One time slice unit == 1ms if (&thread == Processor::current().idle_thread()) return 1; return 10; } timeval Scheduler::time_since_boot() { return { TimeManagement::the().seconds_since_boot(), (suseconds_t)TimeManagement::the().ticks_this_second() * 1000 }; } Thread* g_finalizer; WaitQueue* g_finalizer_wait_queue; Atomic g_finalizer_has_work { false }; static Process* s_colonel_process; u64 g_uptime; Thread::JoinBlocker::JoinBlocker(Thread& joinee, KResult& try_join_result, void*& joinee_exit_value) : m_joinee(&joinee) , m_joinee_exit_value(joinee_exit_value) { auto* current_thread = Thread::current(); // We need to hold our lock to avoid a race where try_join succeeds // but the joinee is joining immediately ScopedSpinLock lock(m_lock); try_join_result = joinee.try_join(*current_thread); m_join_error = try_join_result.is_error(); } void Thread::JoinBlocker::was_unblocked() { ScopedSpinLock lock(m_lock); if (!m_join_error && m_joinee) { // If the joinee hasn't exited yet, remove ourselves now ASSERT(m_joinee != Thread::current()); m_joinee->join_done(); m_joinee = nullptr; } } bool Thread::JoinBlocker::should_unblock(Thread&) { // We need to acquire our lock as the joinee could call joinee_exited // at any moment ScopedSpinLock lock(m_lock); if (m_join_error) { // Thread::block calls should_unblock before actually blocking. // If detected that we can't really block due to an error, we'll // return true here, which will cause Thread::block to return // with BlockResult::NotBlocked. Technically, because m_join_error // will only be set in the constructor, we don't need any lock // to check for it, but at the same time there should not be // any contention, either... return true; } return m_joinee == nullptr; } void Thread::JoinBlocker::joinee_exited(void* value) { ScopedSpinLock lock(m_lock); if (!m_joinee) { // m_joinee can be nullptr if the joiner timed out and the // joinee waits on m_lock while the joiner holds it but has // not yet called join_done. return; } m_joinee_exit_value = value; m_joinee = nullptr; set_interrupted_by_death(); } Thread::FileDescriptionBlocker::FileDescriptionBlocker(const FileDescription& description) : m_blocked_description(description) { } const FileDescription& Thread::FileDescriptionBlocker::blocked_description() const { return m_blocked_description; } Thread::AcceptBlocker::AcceptBlocker(const FileDescription& description) : FileDescriptionBlocker(description) { } bool Thread::AcceptBlocker::should_unblock(Thread&) { auto& socket = *blocked_description().socket(); return socket.can_accept(); } Thread::ConnectBlocker::ConnectBlocker(const FileDescription& description) : FileDescriptionBlocker(description) { } bool Thread::ConnectBlocker::should_unblock(Thread&) { auto& socket = *blocked_description().socket(); return socket.setup_state() == Socket::SetupState::Completed; } Thread::WriteBlocker::WriteBlocker(const FileDescription& description) : FileDescriptionBlocker(description) { } timespec* Thread::WriteBlocker::override_timeout(timespec* timeout) { auto& description = blocked_description(); if (description.is_socket()) { auto& socket = *description.socket(); if (socket.has_send_timeout()) { timeval_to_timespec(Scheduler::time_since_boot(), m_deadline); timespec_add_timeval(m_deadline, socket.send_timeout(), m_deadline); if (!timeout || m_deadline < *timeout) return &m_deadline; } } return timeout; } bool Thread::WriteBlocker::should_unblock(Thread&) { return blocked_description().can_write(); } Thread::ReadBlocker::ReadBlocker(const FileDescription& description) : FileDescriptionBlocker(description) { } timespec* Thread::ReadBlocker::override_timeout(timespec* timeout) { auto& description = blocked_description(); if (description.is_socket()) { auto& socket = *description.socket(); if (socket.has_receive_timeout()) { timeval_to_timespec(Scheduler::time_since_boot(), m_deadline); timespec_add_timeval(m_deadline, socket.receive_timeout(), m_deadline); if (!timeout || m_deadline < *timeout) return &m_deadline; } } return timeout; } bool Thread::ReadBlocker::should_unblock(Thread&) { return blocked_description().can_read(); } Thread::ConditionBlocker::ConditionBlocker(const char* state_string, Function&& condition) : m_block_until_condition(move(condition)) , m_state_string(state_string) { ASSERT(m_block_until_condition); } bool Thread::ConditionBlocker::should_unblock(Thread&) { return m_block_until_condition(); } Thread::SleepBlocker::SleepBlocker(u64 wakeup_time) : m_wakeup_time(wakeup_time) { } bool Thread::SleepBlocker::should_unblock(Thread&) { return m_wakeup_time <= g_uptime; } Thread::SelectBlocker::SelectBlocker(const FDVector& read_fds, const FDVector& write_fds, const FDVector& except_fds) : m_select_read_fds(read_fds) , m_select_write_fds(write_fds) , m_select_exceptional_fds(except_fds) { } bool Thread::SelectBlocker::should_unblock(Thread& thread) { auto& process = thread.process(); for (int fd : m_select_read_fds) { if (!process.m_fds[fd]) continue; if (process.m_fds[fd].description()->can_read()) return true; } for (int fd : m_select_write_fds) { if (!process.m_fds[fd]) continue; if (process.m_fds[fd].description()->can_write()) return true; } return false; } Thread::WaitBlocker::WaitBlocker(int wait_options, ProcessID& waitee_pid) : m_wait_options(wait_options) , m_waitee_pid(waitee_pid) { } bool Thread::WaitBlocker::should_unblock(Thread& thread) { bool should_unblock = m_wait_options & WNOHANG; if (m_waitee_pid != -1) { auto peer = Process::from_pid(m_waitee_pid); if (!peer) return true; } thread.process().for_each_child([&](Process& child) { if (m_waitee_pid != -1 && m_waitee_pid != child.pid()) return IterationDecision::Continue; bool child_exited = child.is_dead(); bool child_stopped = false; if (child.thread_count()) { child.for_each_thread([&](auto& child_thread) { if (child_thread.state() == Thread::State::Stopped && !child_thread.has_pending_signal(SIGCONT)) { child_stopped = true; return IterationDecision::Break; } return IterationDecision::Continue; }); } bool fits_the_spec = ((m_wait_options & WEXITED) && child_exited) || ((m_wait_options & WSTOPPED) && child_stopped); if (!fits_the_spec) return IterationDecision::Continue; m_waitee_pid = child.pid(); should_unblock = true; return IterationDecision::Break; }); return should_unblock; } Thread::SemiPermanentBlocker::SemiPermanentBlocker(Reason reason) : m_reason(reason) { } bool Thread::SemiPermanentBlocker::should_unblock(Thread&) { // someone else has to unblock us return false; } // Called by the scheduler on threads that are blocked for some reason. // Make a decision as to whether to unblock them or not. void Thread::consider_unblock(time_t now_sec, long now_usec) { ScopedSpinLock lock(m_lock); switch (state()) { case Thread::Invalid: case Thread::Runnable: case Thread::Running: case Thread::Dead: case Thread::Stopped: case Thread::Queued: case Thread::Dying: /* don't know, don't care */ return; case Thread::Blocked: { ASSERT(m_blocker != nullptr); timespec now; now.tv_sec = now_sec, now.tv_nsec = now_usec * 1000ull; bool timed_out = m_blocker_timeout && now >= *m_blocker_timeout; if (timed_out || m_blocker->should_unblock(*this)) unblock(); return; } } } void Scheduler::start() { ASSERT_INTERRUPTS_DISABLED(); // We need to acquire our scheduler lock, which will be released // by the idle thread once control transferred there g_scheduler_lock.lock(); auto& processor = Processor::current(); processor.set_scheduler_data(*new SchedulerPerProcessorData()); ASSERT(processor.is_initialized()); auto& idle_thread = *processor.idle_thread(); ASSERT(processor.current_thread() == &idle_thread); ASSERT(processor.idle_thread() == &idle_thread); idle_thread.set_ticks_left(time_slice_for(idle_thread)); idle_thread.did_schedule(); idle_thread.set_initialized(true); processor.init_context(idle_thread, false); idle_thread.set_state(Thread::Running); ASSERT(idle_thread.affinity() == (1u << processor.id())); processor.initialize_context_switching(idle_thread); ASSERT_NOT_REACHED(); } bool Scheduler::pick_next() { ASSERT_INTERRUPTS_DISABLED(); auto current_thread = Thread::current(); auto now = time_since_boot(); auto now_sec = now.tv_sec; auto now_usec = now.tv_usec; // Set the m_in_scheduler flag before acquiring the spinlock. This // prevents a recursive call into Scheduler::invoke_async upon // leaving the scheduler lock. ScopedCritical critical; auto& scheduler_data = Processor::current().get_scheduler_data(); scheduler_data.m_in_scheduler = true; ScopeGuard guard( []() { // We may be on a different processor after we got switched // back to this thread! auto& scheduler_data = Processor::current().get_scheduler_data(); ASSERT(scheduler_data.m_in_scheduler); scheduler_data.m_in_scheduler = false; }); ScopedSpinLock lock(g_scheduler_lock); if (current_thread->should_die() && current_thread->state() == Thread::Running) { // Rather than immediately killing threads, yanking the kernel stack // away from them (which can lead to e.g. reference leaks), we always // allow Thread::wait_on to return. This allows the kernel stack to // clean up and eventually we'll get here shortly before transitioning // back to user mode (from Processor::exit_trap). At this point we // no longer want to schedule this thread. We can't wait until // Scheduler::enter_current because we don't want to allow it to // transition back to user mode. #ifdef SCHEDULER_DEBUG dbg() << "Scheduler[" << Processor::current().id() << "]: Thread " << *current_thread << " is dying"; #endif current_thread->set_state(Thread::Dying); } // Check and unblock threads whose wait conditions have been met. Scheduler::for_each_nonrunnable([&](Thread& thread) { thread.consider_unblock(now_sec, now_usec); return IterationDecision::Continue; }); Process::for_each([&](Process& process) { if (process.is_dead()) { if (current_thread->process().pid() != process.pid() && (!process.ppid() || !Process::from_pid(process.ppid()))) { auto name = process.name(); auto pid = process.pid(); auto exit_status = Process::reap(process); dbg() << "Scheduler[" << Processor::current().id() << "]: Reaped unparented process " << name << "(" << pid.value() << "), exit status: " << exit_status.si_status; } return IterationDecision::Continue; } if (process.m_alarm_deadline && g_uptime > process.m_alarm_deadline) { process.m_alarm_deadline = 0; // FIXME: Should we observe this signal somehow? (void)process.send_signal(SIGALRM, nullptr); } return IterationDecision::Continue; }); // Dispatch any pending signals. Thread::for_each_living([&](Thread& thread) -> IterationDecision { ScopedSpinLock lock(thread.get_lock()); if (!thread.has_unmasked_pending_signals()) return IterationDecision::Continue; // NOTE: dispatch_one_pending_signal() may unblock the process. bool was_blocked = thread.is_blocked(); if (thread.dispatch_one_pending_signal() == ShouldUnblockThread::No) return IterationDecision::Continue; if (was_blocked) { #ifdef SCHEDULER_DEBUG dbg() << "Scheduler[" << Processor::current().id() << "]:Unblock " << thread << " due to signal"; #endif ASSERT(thread.m_blocker != nullptr); thread.m_blocker->set_interrupted_by_signal(); thread.unblock(); } return IterationDecision::Continue; }); #ifdef SCHEDULER_RUNNABLE_DEBUG dbg() << "Non-runnables:"; Scheduler::for_each_nonrunnable([](Thread& thread) -> IterationDecision { if (thread.state() == Thread::Queued) dbg() << " " << String::format("%-12s", thread.state_string()) << " " << thread << " @ " << String::format("%w", thread.tss().cs) << ":" << String::format("%x", thread.tss().eip) << " Reason: " << (thread.wait_reason() ? thread.wait_reason() : "none"); else if (thread.state() == Thread::Dying) dbg() << " " << String::format("%-12s", thread.state_string()) << " " << thread << " @ " << String::format("%w", thread.tss().cs) << ":" << String::format("%x", thread.tss().eip) << " Finalizable: " << thread.is_finalizable(); else dbg() << " " << String::format("%-12s", thread.state_string()) << " " << thread << " @ " << String::format("%w", thread.tss().cs) << ":" << String::format("%x", thread.tss().eip); return IterationDecision::Continue; }); dbg() << "Runnables:"; Scheduler::for_each_runnable([](Thread& thread) -> IterationDecision { dbg() << " " << String::format("%3u", thread.effective_priority()) << "/" << String::format("%2u", thread.priority()) << " " << String::format("%-12s", thread.state_string()) << " " << thread << " @ " << String::format("%w", thread.tss().cs) << ":" << String::format("%x", thread.tss().eip); return IterationDecision::Continue; }); #endif Thread* thread_to_schedule = nullptr; Vector sorted_runnables; for_each_runnable([&](auto& thread) { if ((thread.affinity() & (1u << Processor::current().id())) != 0) sorted_runnables.append(&thread); if (&thread == scheduler_data.m_pending_beneficiary) { thread_to_schedule = &thread; return IterationDecision::Break; } return IterationDecision::Continue; }); if (thread_to_schedule) { // The thread we're supposed to donate to still exists const char* reason = scheduler_data.m_pending_donate_reason; scheduler_data.m_pending_beneficiary = nullptr; scheduler_data.m_pending_donate_reason = nullptr; // We need to leave our first critical section before switching context, // but since we're still holding the scheduler lock we're still in a critical section critical.leave(); #ifdef SCHEDULER_DEBUG dbg() << "Processing pending donate to " << *thread_to_schedule << " reason=" << reason; #endif return donate_to_and_switch(thread_to_schedule, reason); } // Either we're not donating or the beneficiary disappeared. // Either way clear any pending information scheduler_data.m_pending_beneficiary = nullptr; scheduler_data.m_pending_donate_reason = nullptr; quick_sort(sorted_runnables, [](auto& a, auto& b) { return a->effective_priority() >= b->effective_priority(); }); for (auto* thread : sorted_runnables) { if (thread->process().exec_tid() && thread->process().exec_tid() != thread->tid()) continue; ASSERT(thread->state() == Thread::Runnable || thread->state() == Thread::Running); if (!thread_to_schedule) { thread->m_extra_priority = 0; thread_to_schedule = thread; } else { thread->m_extra_priority++; } } if (!thread_to_schedule) thread_to_schedule = Processor::current().idle_thread(); #ifdef SCHEDULER_DEBUG dbg() << "Scheduler[" << Processor::current().id() << "]: Switch to " << *thread_to_schedule << " @ " << String::format("%04x:%08x", thread_to_schedule->tss().cs, thread_to_schedule->tss().eip); #endif // We need to leave our first critical section before switching context, // but since we're still holding the scheduler lock we're still in a critical section critical.leave(); return context_switch(thread_to_schedule); } bool Scheduler::yield() { InterruptDisabler disabler; auto& proc = Processor::current(); auto& scheduler_data = proc.get_scheduler_data(); // Clear any pending beneficiary scheduler_data.m_pending_beneficiary = nullptr; scheduler_data.m_pending_donate_reason = nullptr; auto current_thread = Thread::current(); #ifdef SCHEDULER_DEBUG dbg() << "Scheduler[" << proc.id() << "]: yielding thread " << *current_thread << " in_irq: " << proc.in_irq(); #endif ASSERT(current_thread != nullptr); if (proc.in_irq() || proc.in_critical()) { // If we're handling an IRQ we can't switch context, or we're in // a critical section where we don't want to switch contexts, then // delay until exiting the trap or critical section proc.invoke_scheduler_async(); return false; } if (!Scheduler::pick_next()) return false; #ifdef SCHEDULER_DEBUG dbg() << "Scheduler[" << Processor::current().id() << "]: yield returns to thread " << *current_thread << " in_irq: " << Processor::current().in_irq(); #endif return true; } bool Scheduler::donate_to_and_switch(Thread* beneficiary, const char* reason) { ASSERT(g_scheduler_lock.own_lock()); auto& proc = Processor::current(); ASSERT(proc.in_critical() == 1); (void)reason; unsigned ticks_left = Thread::current()->ticks_left(); if (!beneficiary || beneficiary->state() != Thread::Runnable || ticks_left <= 1) return Scheduler::yield(); unsigned ticks_to_donate = min(ticks_left - 1, time_slice_for(*beneficiary)); #ifdef SCHEDULER_DEBUG dbg() << "Scheduler[" << proc.id() << "]: Donating " << ticks_to_donate << " ticks to " << *beneficiary << ", reason=" << reason; #endif beneficiary->set_ticks_left(ticks_to_donate); return Scheduler::context_switch(beneficiary); } bool Scheduler::donate_to(RefPtr& beneficiary, const char* reason) { ASSERT(beneficiary); if (beneficiary == Thread::current()) return Scheduler::yield(); // Set the m_in_scheduler flag before acquiring the spinlock. This // prevents a recursive call into Scheduler::invoke_async upon // leaving the scheduler lock. ScopedCritical critical; auto& proc = Processor::current(); auto& scheduler_data = proc.get_scheduler_data(); scheduler_data.m_in_scheduler = true; ScopeGuard guard( []() { // We may be on a different processor after we got switched // back to this thread! auto& scheduler_data = Processor::current().get_scheduler_data(); ASSERT(scheduler_data.m_in_scheduler); scheduler_data.m_in_scheduler = false; }); ASSERT(!proc.in_irq()); if (proc.in_critical() > 1) { scheduler_data.m_pending_beneficiary = beneficiary->make_weak_ptr(); // Save the beneficiary scheduler_data.m_pending_donate_reason = reason; proc.invoke_scheduler_async(); return false; } ScopedSpinLock lock(g_scheduler_lock); // "Leave" the critical section before switching context. Since we // still hold the scheduler lock, we're not actually leaving it. // Processor::switch_context expects Processor::in_critical() to be 1 critical.leave(); donate_to_and_switch(beneficiary, reason); return false; } bool Scheduler::context_switch(Thread* thread) { thread->set_ticks_left(time_slice_for(*thread)); thread->did_schedule(); auto from_thread = Thread::current(); if (from_thread == thread) return false; if (from_thread) { // If the last process hasn't blocked (still marked as running), // mark it as runnable for the next round. if (from_thread->state() == Thread::Running) from_thread->set_state(Thread::Runnable); #ifdef LOG_EVERY_CONTEXT_SWITCH dbg() << "Scheduler[" << Processor::current().id() << "]: " << *from_thread << " -> " << *thread << " [" << thread->priority() << "] " << String::format("%w", thread->tss().cs) << ":" << String::format("%x", thread->tss().eip); #endif } auto& proc = Processor::current(); if (!thread->is_initialized()) { proc.init_context(*thread, false); thread->set_initialized(true); } thread->set_state(Thread::Running); // Mark it as active because we are using this thread. This is similar // to comparing it with Processor::current_thread, but when there are // multiple processors there's no easy way to check whether the thread // is actually still needed. This prevents accidental finalization when // a thread is no longer in Running state, but running on another core. thread->set_active(true); proc.switch_context(from_thread, thread); // NOTE: from_thread at this point reflects the thread we were // switched from, and thread reflects Thread::current() enter_current(*from_thread); ASSERT(thread == Thread::current()); return true; } void Scheduler::enter_current(Thread& prev_thread) { ASSERT(g_scheduler_lock.is_locked()); prev_thread.set_active(false); if (prev_thread.state() == Thread::Dying) { // If the thread we switched from is marked as dying, then notify // the finalizer. Note that as soon as we leave the scheduler lock // the finalizer may free from_thread! notify_finalizer(); } } void Scheduler::leave_on_first_switch(u32 flags) { // This is called when a thread is switched into for the first time. // At this point, enter_current has already be called, but because // Scheduler::context_switch is not in the call stack we need to // clean up and release locks manually here g_scheduler_lock.unlock(flags); auto& scheduler_data = Processor::current().get_scheduler_data(); ASSERT(scheduler_data.m_in_scheduler); scheduler_data.m_in_scheduler = false; } void Scheduler::prepare_after_exec() { // This is called after exec() when doing a context "switch" into // the new process. This is called from Processor::assume_context ASSERT(g_scheduler_lock.own_lock()); auto& scheduler_data = Processor::current().get_scheduler_data(); ASSERT(!scheduler_data.m_in_scheduler); scheduler_data.m_in_scheduler = true; } void Scheduler::prepare_for_idle_loop() { // This is called when the CPU finished setting up the idle loop // and is about to run it. We need to acquire he scheduler lock ASSERT(!g_scheduler_lock.own_lock()); g_scheduler_lock.lock(); auto& scheduler_data = Processor::current().get_scheduler_data(); ASSERT(!scheduler_data.m_in_scheduler); scheduler_data.m_in_scheduler = true; } Process* Scheduler::colonel() { ASSERT(s_colonel_process); return s_colonel_process; } void Scheduler::initialize() { ASSERT(&Processor::current() != nullptr); // sanity check RefPtr idle_thread; g_scheduler_data = new SchedulerData; g_finalizer_wait_queue = new WaitQueue; g_finalizer_has_work.store(false, AK::MemoryOrder::memory_order_release); s_colonel_process = &Process::create_kernel_process(idle_thread, "colonel", idle_loop, 1).leak_ref(); ASSERT(s_colonel_process); ASSERT(idle_thread); idle_thread->set_priority(THREAD_PRIORITY_MIN); idle_thread->set_name(StringView("idle thread #0")); set_idle_thread(idle_thread); } void Scheduler::set_idle_thread(Thread* idle_thread) { Processor::current().set_idle_thread(*idle_thread); Processor::current().set_current_thread(*idle_thread); } Thread* Scheduler::create_ap_idle_thread(u32 cpu) { ASSERT(cpu != 0); // This function is called on the bsp, but creates an idle thread for another AP ASSERT(Processor::current().id() == 0); ASSERT(s_colonel_process); Thread* idle_thread = s_colonel_process->create_kernel_thread(idle_loop, THREAD_PRIORITY_MIN, String::format("idle thread #%u", cpu), 1 << cpu, false); ASSERT(idle_thread); return idle_thread; } void Scheduler::timer_tick(const RegisterState& regs) { ASSERT_INTERRUPTS_DISABLED(); ASSERT(Processor::current().in_irq()); auto current_thread = Processor::current().current_thread(); if (!current_thread) return; bool is_bsp = Processor::current().id() == 0; if (!is_bsp) return; // TODO: This prevents scheduling on other CPUs! if (is_bsp) { // TODO: We should probably move this out of the scheduler ++g_uptime; g_timeofday = TimeManagement::now_as_timeval(); } if (current_thread->process().is_profiling()) { SmapDisabler disabler; auto backtrace = current_thread->raw_backtrace(regs.ebp, regs.eip); auto& sample = Profiling::next_sample_slot(); sample.pid = current_thread->process().pid(); sample.tid = current_thread->tid(); sample.timestamp = g_uptime; for (size_t i = 0; i < min(backtrace.size(), Profiling::max_stack_frame_count); ++i) { sample.frames[i] = backtrace[i]; } } if (is_bsp) TimerQueue::the().fire(); if (current_thread->tick()) return; ASSERT_INTERRUPTS_DISABLED(); ASSERT(Processor::current().in_irq()); Processor::current().invoke_scheduler_async(); } void Scheduler::invoke_async() { ASSERT_INTERRUPTS_DISABLED(); auto& proc = Processor::current(); ASSERT(!proc.in_irq()); // Since this function is called when leaving critical sections (such // as a SpinLock), we need to check if we're not already doing this // to prevent recursion if (!proc.get_scheduler_data().m_in_scheduler) pick_next(); } void Scheduler::notify_finalizer() { if (g_finalizer_has_work.exchange(true, AK::MemoryOrder::memory_order_acq_rel) == false) g_finalizer_wait_queue->wake_all(); } void Scheduler::idle_loop() { dbg() << "Scheduler[" << Processor::current().id() << "]: idle loop running"; ASSERT(are_interrupts_enabled()); for (;;) { asm("hlt"); if (Processor::current().id() == 0) yield(); } } }