#include "Ext2FileSystem.h" #include "ext2_fs.h" #include "UnixTypes.h" #include "RTC.h" #include #include #include #include #include #include #include //#define EXT2_DEBUG RetainPtr Ext2FS::create(RetainPtr&& device) { return adopt(*new Ext2FS(move(device))); } Ext2FS::Ext2FS(RetainPtr&& device) : DiskBackedFS(move(device)) { } Ext2FS::~Ext2FS() { } ByteBuffer Ext2FS::read_super_block() const { auto buffer = ByteBuffer::create_uninitialized(1024); device().read_block(2, buffer.pointer()); device().read_block(3, buffer.offset_pointer(512)); return buffer; } bool Ext2FS::write_super_block(const ext2_super_block& sb) { const byte* raw = (const byte*)&sb; bool success; success = device().write_block(2, raw); ASSERT(success); success = device().write_block(3, raw + 512); ASSERT(success); // FIXME: This is an ugly way to refresh the superblock cache. :-| super_block(); return true; } unsigned Ext2FS::first_block_of_group(unsigned groupIndex) const { return super_block().s_first_data_block + (groupIndex * super_block().s_blocks_per_group); } const ext2_super_block& Ext2FS::super_block() const { if (!m_cached_super_block) m_cached_super_block = read_super_block(); return *reinterpret_cast(m_cached_super_block.pointer()); } const ext2_group_desc& Ext2FS::group_descriptor(unsigned groupIndex) const { // FIXME: Should this fail gracefully somehow? ASSERT(groupIndex <= m_blockGroupCount); if (!m_cached_group_descriptor_table) { unsigned blocksToRead = ceilDiv(m_blockGroupCount * (unsigned)sizeof(ext2_group_desc), blockSize()); unsigned firstBlockOfBGDT = blockSize() == 1024 ? 2 : 1; #ifdef EXT2_DEBUG kprintf("ext2fs: block group count: %u, blocks-to-read: %u\n", m_blockGroupCount, blocksToRead); kprintf("ext2fs: first block of BGDT: %u\n", firstBlockOfBGDT); #endif m_cached_group_descriptor_table = readBlocks(firstBlockOfBGDT, blocksToRead); } return reinterpret_cast(m_cached_group_descriptor_table.pointer())[groupIndex - 1]; } bool Ext2FS::initialize() { auto& superBlock = this->super_block(); #ifdef EXT2_DEBUG kprintf("ext2fs: super block magic: %x (super block size: %u)\n", superBlock.s_magic, sizeof(ext2_super_block)); #endif if (superBlock.s_magic != EXT2_SUPER_MAGIC) return false; #ifdef EXT2_DEBUG kprintf("ext2fs: %u inodes, %u blocks\n", superBlock.s_inodes_count, superBlock.s_blocks_count); kprintf("ext2fs: block size = %u\n", EXT2_BLOCK_SIZE(&superBlock)); kprintf("ext2fs: first data block = %u\n", superBlock.s_first_data_block); kprintf("ext2fs: inodes per block = %u\n", inodes_per_block()); kprintf("ext2fs: inodes per group = %u\n", inodes_per_group()); kprintf("ext2fs: free inodes = %u\n", superBlock.s_free_inodes_count); kprintf("ext2fs: desc per block = %u\n", EXT2_DESC_PER_BLOCK(&superBlock)); kprintf("ext2fs: desc size = %u\n", EXT2_DESC_SIZE(&superBlock)); #endif setBlockSize(EXT2_BLOCK_SIZE(&superBlock)); m_blockGroupCount = ceilDiv(superBlock.s_blocks_count, superBlock.s_blocks_per_group); if (m_blockGroupCount == 0) { kprintf("ext2fs: no block groups :(\n"); return false; } // Preheat the BGD cache. group_descriptor(0); #ifdef EXT2_DEBUG for (unsigned i = 1; i <= m_blockGroupCount; ++i) { auto& group = group_descriptor(i); kprintf("ext2fs: group[%u] { block_bitmap: %u, inode_bitmap: %u, inode_table: %u }\n", i, group.bg_block_bitmap, group.bg_inode_bitmap, group.bg_inode_table); } #endif return true; } const char* Ext2FS::class_name() const { return "ext2fs"; } InodeIdentifier Ext2FS::root_inode() const { return { fsid(), EXT2_ROOT_INO }; } ByteBuffer Ext2FS::read_block_containing_inode(unsigned inode, unsigned& blockIndex, unsigned& offset) const { auto& superBlock = this->super_block(); if (inode != EXT2_ROOT_INO && inode < EXT2_FIRST_INO(&superBlock)) return { }; if (inode > superBlock.s_inodes_count) return { }; auto& bgd = group_descriptor(group_index_from_inode(inode)); offset = ((inode - 1) % inodes_per_group()) * inode_size(); blockIndex = bgd.bg_inode_table + (offset >> EXT2_BLOCK_SIZE_BITS(&superBlock)); offset &= blockSize() - 1; return readBlock(blockIndex); } Ext2FS::BlockListShape Ext2FS::compute_block_list_shape(unsigned blocks) { BlockListShape shape; const unsigned entries_per_block = EXT2_ADDR_PER_BLOCK(&super_block()); unsigned blocks_remaining = blocks; shape.direct_blocks = min((unsigned)EXT2_NDIR_BLOCKS, blocks_remaining); blocks_remaining -= shape.direct_blocks; if (!blocks_remaining) return shape; shape.indirect_blocks = min(blocks_remaining, entries_per_block); blocks_remaining -= shape.indirect_blocks; shape.meta_blocks += 1; if (!blocks_remaining) return shape; ASSERT_NOT_REACHED(); // FIXME: Support dind/tind blocks. shape.doubly_indirect_blocks = min(blocks_remaining, entries_per_block * entries_per_block); blocks_remaining -= shape.doubly_indirect_blocks; if (!blocks_remaining) return shape; shape.triply_indirect_blocks = min(blocks_remaining, entries_per_block * entries_per_block * entries_per_block); blocks_remaining -= shape.triply_indirect_blocks; // FIXME: What do we do for files >= 16GB? ASSERT(!blocks_remaining); return shape; } bool Ext2FS::write_block_list_for_inode(InodeIndex inode_index, ext2_inode& e2inode, const Vector& blocks) { dbgprintf("Ext2FS: writing %u block(s) to i_block array\n", min((size_t)EXT2_NDIR_BLOCKS, blocks.size())); auto old_shape = compute_block_list_shape(e2inode.i_blocks / (2 << super_block().s_log_block_size)); auto new_shape = compute_block_list_shape(blocks.size()); Vector new_meta_blocks; if (new_shape.meta_blocks > old_shape.meta_blocks) { new_meta_blocks = allocate_blocks(group_index_from_inode(inode_index), new_shape.meta_blocks - old_shape.meta_blocks); for (auto bi : new_meta_blocks) set_block_allocation_state(group_index_from_inode(inode_index), bi, true); } e2inode.i_blocks = (blocks.size() + new_shape.meta_blocks) * (blockSize() / 512); unsigned output_block_index = 0; unsigned remaining_blocks = blocks.size(); for (unsigned i = 0; i < new_shape.direct_blocks; ++i) { e2inode.i_block[i] = blocks[output_block_index++]; --remaining_blocks; } write_ext2_inode(inode_index, e2inode); if (!remaining_blocks) return true; if (!e2inode.i_block[EXT2_IND_BLOCK]) { e2inode.i_block[EXT2_IND_BLOCK] = new_meta_blocks.take_last(); write_ext2_inode(inode_index, e2inode); } { dbgprintf("Ext2FS: Writing out indirect blockptr block for inode %u\n", inode_index); auto block_contents = ByteBuffer::create_uninitialized(blockSize()); BufferStream stream(block_contents); ASSERT(new_shape.indirect_blocks <= EXT2_ADDR_PER_BLOCK(&super_block())); for (unsigned i = 0; i < new_shape.indirect_blocks; ++i) { stream << blocks[output_block_index++]; --remaining_blocks; } stream.fill_to_end(0); writeBlock(e2inode.i_block[EXT2_IND_BLOCK], block_contents); } if (!remaining_blocks) return true; // FIXME: Implement! ASSERT_NOT_REACHED(); } Vector Ext2FS::block_list_for_inode(const ext2_inode& e2inode, bool include_block_list_blocks) const { unsigned entriesPerBlock = EXT2_ADDR_PER_BLOCK(&super_block()); // NOTE: i_blocks is number of 512-byte blocks, not number of fs-blocks. unsigned blockCount = e2inode.i_blocks / (blockSize() / 512); unsigned blocksRemaining = blockCount; Vector list; if (include_block_list_blocks) { // This seems like an excessive over-estimate but w/e. list.ensure_capacity(blocksRemaining * 2); } else { list.ensure_capacity(blocksRemaining); } unsigned directCount = min(blockCount, (unsigned)EXT2_NDIR_BLOCKS); for (unsigned i = 0; i < directCount; ++i) { list.unchecked_append(e2inode.i_block[i]); --blocksRemaining; } if (!blocksRemaining) return list; auto processBlockArray = [&] (unsigned arrayBlockIndex, auto&& callback) { if (include_block_list_blocks) callback(arrayBlockIndex); auto arrayBlock = readBlock(arrayBlockIndex); ASSERT(arrayBlock); auto* array = reinterpret_cast(arrayBlock.pointer()); unsigned count = min(blocksRemaining, entriesPerBlock); for (unsigned i = 0; i < count; ++i) { if (!array[i]) { blocksRemaining = 0; return; } callback(array[i]); --blocksRemaining; } }; processBlockArray(e2inode.i_block[EXT2_IND_BLOCK], [&] (unsigned entry) { list.unchecked_append(entry); }); if (!blocksRemaining) return list; processBlockArray(e2inode.i_block[EXT2_DIND_BLOCK], [&] (unsigned entry) { processBlockArray(entry, [&] (unsigned entry) { list.unchecked_append(entry); }); }); if (!blocksRemaining) return list; processBlockArray(e2inode.i_block[EXT2_TIND_BLOCK], [&] (unsigned entry) { processBlockArray(entry, [&] (unsigned entry) { processBlockArray(entry, [&] (unsigned entry) { list.unchecked_append(entry); }); }); }); return list; } void Ext2FS::free_inode(Ext2FSInode& inode) { ASSERT(inode.m_raw_inode.i_links_count == 0); dbgprintf("Ext2FS: inode %u has no more links, time to delete!\n", inode.index()); inode.m_raw_inode.i_dtime = RTC::now(); write_ext2_inode(inode.index(), inode.m_raw_inode); auto block_list = block_list_for_inode(inode.m_raw_inode, true); auto group_index = group_index_from_inode(inode.index()); for (auto block_index : block_list) set_block_allocation_state(group_index, block_index, false); set_inode_allocation_state(inode.index(), false); } Ext2FSInode::Ext2FSInode(Ext2FS& fs, unsigned index, const ext2_inode& raw_inode) : Inode(fs, index) , m_raw_inode(raw_inode) { } Ext2FSInode::~Ext2FSInode() { if (m_raw_inode.i_links_count == 0) fs().free_inode(*this); } InodeMetadata Ext2FSInode::metadata() const { InodeMetadata metadata; metadata.inode = identifier(); metadata.size = m_raw_inode.i_size; metadata.mode = m_raw_inode.i_mode; metadata.uid = m_raw_inode.i_uid; metadata.gid = m_raw_inode.i_gid; metadata.linkCount = m_raw_inode.i_links_count; metadata.atime = m_raw_inode.i_atime; metadata.ctime = m_raw_inode.i_ctime; metadata.mtime = m_raw_inode.i_mtime; metadata.dtime = m_raw_inode.i_dtime; metadata.blockSize = fs().blockSize(); metadata.blockCount = m_raw_inode.i_blocks; if (isBlockDevice(m_raw_inode.i_mode) || isCharacterDevice(m_raw_inode.i_mode)) { unsigned dev = m_raw_inode.i_block[0]; metadata.majorDevice = (dev & 0xfff00) >> 8; metadata.minorDevice= (dev & 0xff) | ((dev >> 12) & 0xfff00); } return metadata; } void Ext2FSInode::flush_metadata() { dbgprintf("Ext2FSInode: flush_metadata for inode %u\n", index()); fs().write_ext2_inode(index(), m_raw_inode); if (is_directory()) { // FIXME: This invalidation is way too hardcore. LOCKER(m_lock); m_lookup_cache.clear(); } set_metadata_dirty(false); } RetainPtr Ext2FS::get_inode(InodeIdentifier inode) const { ASSERT(inode.fsid() == fsid()); { LOCKER(m_inode_cache_lock); auto it = m_inode_cache.find(inode.index()); if (it != m_inode_cache.end()) return (*it).value; } if (!get_inode_allocation_state(inode.index())) { LOCKER(m_inode_cache_lock); m_inode_cache.set(inode.index(), nullptr); return nullptr; } unsigned block_index; unsigned offset; auto block = read_block_containing_inode(inode.index(), block_index, offset); if (!block) return { }; // FIXME: Avoid this extra allocation, copy the raw inode directly into the Ext2FSInode metadata somehow. auto* e2inode = reinterpret_cast(kmalloc(inode_size())); memcpy(e2inode, reinterpret_cast(block.offset_pointer(offset)), inode_size()); auto raw_inode = OwnPtr(e2inode); if (!raw_inode) return nullptr; LOCKER(m_inode_cache_lock); auto it = m_inode_cache.find(inode.index()); if (it != m_inode_cache.end()) return (*it).value; auto new_inode = adopt(*new Ext2FSInode(const_cast(*this), inode.index(), *raw_inode)); m_inode_cache.set(inode.index(), new_inode.copyRef()); return new_inode; } ssize_t Ext2FSInode::read_bytes(off_t offset, size_t count, byte* buffer, FileDescriptor*) { ASSERT(offset >= 0); if (m_raw_inode.i_size == 0) return 0; // Symbolic links shorter than 60 characters are store inline inside the i_block array. // This avoids wasting an entire block on short links. (Most links are short.) static const unsigned max_inline_symlink_length = 60; if (is_symlink() && size() < max_inline_symlink_length) { ssize_t nread = min((off_t)size() - offset, static_cast(count)); memcpy(buffer, m_raw_inode.i_block + offset, nread); return nread; } if (m_block_list.is_empty()) { auto block_list = fs().block_list_for_inode(m_raw_inode); LOCKER(m_lock); if (m_block_list.size() != block_list.size()) m_block_list = move(block_list); } if (m_block_list.is_empty()) { kprintf("ext2fs: read_bytes: empty block list for inode %u\n", index()); return -EIO; } const size_t block_size = fs().blockSize(); dword first_block_logical_index = offset / block_size; dword last_block_logical_index = (offset + count) / block_size; if (last_block_logical_index >= m_block_list.size()) last_block_logical_index = m_block_list.size() - 1; dword offset_into_first_block = offset % block_size; ssize_t nread = 0; size_t remaining_count = min((off_t)count, (off_t)size() - offset); byte* out = buffer; #ifdef EXT2_DEBUG kprintf("Ext2FS: Reading up to %u bytes %d bytes into inode %u:%u to %p\n", count, offset, identifier().fsid(), identifier().index(), buffer); //kprintf("ok let's do it, read(%u, %u) -> blocks %u thru %u, oifb: %u\n", offset, count, first_block_logical_index, last_block_logical_index, offset_into_first_block); #endif for (dword bi = first_block_logical_index; remaining_count && bi <= last_block_logical_index; ++bi) { auto block = fs().readBlock(m_block_list[bi]); if (!block) { kprintf("ext2fs: read_bytes: readBlock(%u) failed (lbi: %u)\n", m_block_list[bi], bi); return -EIO; } dword offset_into_block = (bi == first_block_logical_index) ? offset_into_first_block : 0; dword num_bytes_to_copy = min(block_size - offset_into_block, remaining_count); memcpy(out, block.pointer() + offset_into_block, num_bytes_to_copy); remaining_count -= num_bytes_to_copy; nread += num_bytes_to_copy; out += num_bytes_to_copy; } return nread; } ssize_t Ext2FSInode::write_bytes(off_t offset, size_t count, const byte* data, FileDescriptor*) { LOCKER(m_lock); // FIXME: Support writing to symlink inodes. ASSERT(!is_symlink()); ASSERT(offset >= 0); const size_t block_size = fs().blockSize(); size_t new_size = max(static_cast(offset) + count, size()); unsigned blocks_needed_before = ceilDiv(size(), block_size); unsigned blocks_needed_after = ceilDiv(new_size, block_size); auto block_list = fs().block_list_for_inode(m_raw_inode); if (blocks_needed_after > blocks_needed_before) { auto new_blocks = fs().allocate_blocks(fs().group_index_from_inode(index()), blocks_needed_after - blocks_needed_before); for (auto new_block_index : new_blocks) fs().set_block_allocation_state(fs().group_index_from_inode(index()), new_block_index, true); block_list.append(move(new_blocks)); } else if (blocks_needed_after < blocks_needed_before) { // FIXME: Implement block list shrinking! ASSERT_NOT_REACHED(); } dword first_block_logical_index = offset / block_size; dword last_block_logical_index = (offset + count) / block_size; if (last_block_logical_index >= block_list.size()) last_block_logical_index = block_list.size() - 1; dword offset_into_first_block = offset % block_size; ssize_t nwritten = 0; size_t remaining_count = min((off_t)count, (off_t)new_size - offset); const byte* in = data; #ifdef EXT2_DEBUG dbgprintf("Ext2FSInode::write_bytes: Writing %u bytes %d bytes into inode %u:%u from %p\n", count, offset, fsid(), index(), data); #endif auto buffer_block = ByteBuffer::create_uninitialized(block_size); for (dword bi = first_block_logical_index; remaining_count && bi <= last_block_logical_index; ++bi) { dword offset_into_block = (bi == first_block_logical_index) ? offset_into_first_block : 0; dword num_bytes_to_copy = min(block_size - offset_into_block, remaining_count); ByteBuffer block; if (offset_into_block != 0) { block = fs().readBlock(block_list[bi]); if (!block) { kprintf("Ext2FSInode::write_bytes: readBlock(%u) failed (lbi: %u)\n", block_list[bi], bi); return -EIO; } } else block = buffer_block; memcpy(block.pointer() + offset_into_block, in, num_bytes_to_copy); if (offset_into_block == 0 && !num_bytes_to_copy) memset(block.pointer() + num_bytes_to_copy, 0, block_size - num_bytes_to_copy); #ifdef EXT2_DEBUG dbgprintf("Ext2FSInode::write_bytes: writing block %u (offset_into_block: %u)\n", block_list[bi], offset_into_block); #endif bool success = fs().writeBlock(block_list[bi], block); if (!success) { kprintf("Ext2FSInode::write_bytes: writeBlock(%u) failed (lbi: %u)\n", block_list[bi], bi); return -EIO; } remaining_count -= num_bytes_to_copy; nwritten += num_bytes_to_copy; in += num_bytes_to_copy; } bool success = fs().write_block_list_for_inode(index(), m_raw_inode, block_list); ASSERT(success); m_raw_inode.i_size = new_size; fs().write_ext2_inode(index(), m_raw_inode); #ifdef EXT2_DEBUG dbgprintf("Ext2FSInode::write_bytes: after write, i_size=%u, i_blocks=%u (%u blocks in list)\n", m_raw_inode.i_size, m_raw_inode.i_blocks, block_list.size()); #endif // NOTE: Make sure the cached block list is up to date! m_block_list = move(block_list); return nwritten; } bool Ext2FSInode::traverse_as_directory(Function callback) { ASSERT(metadata().isDirectory()); #ifdef EXT2_DEBUG kprintf("Ext2Inode::traverse_as_directory: inode=%u:\n", index()); #endif auto buffer = read_entire(); ASSERT(buffer); auto* entry = reinterpret_cast(buffer.pointer()); while (entry < buffer.end_pointer()) { if (entry->inode != 0) { #ifdef EXT2_DEBUG kprintf("Ext2Inode::traverse_as_directory: %u, name_len: %u, rec_len: %u, file_type: %u, name: %s\n", entry->inode, entry->name_len, entry->rec_len, entry->file_type, String(entry->name, entry->name_len).characters()); #endif if (!callback({ entry->name, entry->name_len, { fsid(), entry->inode }, entry->file_type })) break; } entry = (ext2_dir_entry_2*)((char*)entry + entry->rec_len); } return true; } bool Ext2FSInode::add_child(InodeIdentifier child_id, const String& name, byte file_type, int& error) { ASSERT(is_directory()); //#ifdef EXT2_DEBUG dbgprintf("Ext2FS: Adding inode %u with name '%s' to directory %u\n", child_id.index(), name.characters(), index()); //#endif Vector entries; bool name_already_exists = false; traverse_as_directory([&] (auto& entry) { if (!strcmp(entry.name, name.characters())) { name_already_exists = true; return false; } entries.append(entry); return true; }); if (name_already_exists) { kprintf("Ext2FS: Name '%s' already exists in directory inode %u\n", name.characters(), index()); error = -EEXIST; return false; } entries.append({ name.characters(), name.length(), child_id, file_type }); bool success = fs().write_directory_inode(index(), move(entries)); if (success) { LOCKER(m_lock); m_lookup_cache.set(name, child_id.index()); } return success; } bool Ext2FSInode::remove_child(const String& name, int& error) { ASSERT(is_directory()); unsigned child_inode_index; { LOCKER(m_lock); auto it = m_lookup_cache.find(name); if (it == m_lookup_cache.end()) { error = -ENOENT; return false; } child_inode_index = (*it).value; } InodeIdentifier child_id { fsid(), child_inode_index }; //#ifdef EXT2_DEBUG dbgprintf("Ext2FS: Removing '%s' in directory %u\n", name.characters(), index()); //#endif Vector entries; traverse_as_directory([&] (auto& entry) { if (entry.inode != child_id) entries.append(entry); return true; }); bool success = fs().write_directory_inode(index(), move(entries)); if (!success) { // FIXME: Plumb error from write_directory_inode(). error = -EIO; return false; } { LOCKER(m_lock); m_lookup_cache.remove(name); } auto child_inode = fs().get_inode(child_id); child_inode->decrement_link_count(); return success; } bool Ext2FS::write_directory_inode(unsigned directoryInode, Vector&& entries) { dbgprintf("Ext2FS: New directory inode %u contents to write:\n", directoryInode); unsigned directorySize = 0; for (auto& entry : entries) { //kprintf(" - %08u %s\n", entry.inode.index(), entry.name); directorySize += EXT2_DIR_REC_LEN(entry.name_length); } unsigned blocksNeeded = ceilDiv(directorySize, blockSize()); unsigned occupiedSize = blocksNeeded * blockSize(); dbgprintf("Ext2FS: directory size: %u (occupied: %u)\n", directorySize, occupiedSize); auto directoryData = ByteBuffer::create_uninitialized(occupiedSize); BufferStream stream(directoryData); for (unsigned i = 0; i < entries.size(); ++i) { auto& entry = entries[i]; unsigned recordLength = EXT2_DIR_REC_LEN(entry.name_length); if (i == entries.size() - 1) recordLength += occupiedSize - directorySize; dbgprintf("* inode: %u", entry.inode.index()); dbgprintf(", name_len: %u", word(entry.name_length)); dbgprintf(", rec_len: %u", word(recordLength)); dbgprintf(", file_type: %u", byte(entry.fileType)); dbgprintf(", name: %s\n", entry.name); stream << dword(entry.inode.index()); stream << word(recordLength); stream << byte(entry.name_length); stream << byte(entry.fileType); stream << entry.name; unsigned padding = recordLength - entry.name_length - 8; //dbgprintf(" *** pad %u bytes\n", padding); for (unsigned j = 0; j < padding; ++j) { stream << byte(0); } } stream.fill_to_end(0); #if 0 kprintf("data to write (%u):\n", directoryData.size()); for (unsigned i = 0; i < directoryData.size(); ++i) { kprintf("%02x ", directoryData[i]); if ((i + 1) % 8 == 0) kprintf(" "); if ((i + 1) % 16 == 0) kprintf("\n"); } kprintf("\n"); #endif return get_inode({ fsid(), directoryInode })->write_bytes(0, directoryData.size(), directoryData.pointer(), nullptr); } unsigned Ext2FS::inodes_per_block() const { return EXT2_INODES_PER_BLOCK(&super_block()); } unsigned Ext2FS::inodes_per_group() const { return EXT2_INODES_PER_GROUP(&super_block()); } unsigned Ext2FS::inode_size() const { return EXT2_INODE_SIZE(&super_block()); } unsigned Ext2FS::blocks_per_group() const { return EXT2_BLOCKS_PER_GROUP(&super_block()); } void Ext2FS::dump_block_bitmap(unsigned groupIndex) const { ASSERT(groupIndex <= m_blockGroupCount); auto& bgd = group_descriptor(groupIndex); unsigned blocksInGroup = min(blocks_per_group(), super_block().s_blocks_count); unsigned blockCount = ceilDiv(blocksInGroup, 8u); auto bitmapBlocks = readBlocks(bgd.bg_block_bitmap, blockCount); ASSERT(bitmapBlocks); kprintf("ext2fs: group[%u] block bitmap (bitmap occupies %u blocks):\n", groupIndex, blockCount); auto bitmap = Bitmap::wrap(bitmapBlocks.pointer(), blocksInGroup); for (unsigned i = 0; i < blocksInGroup; ++i) { kprintf("%c", bitmap.get(i) ? '1' : '0'); } kprintf("\n"); } void Ext2FS::dump_inode_bitmap(unsigned groupIndex) const { traverse_inode_bitmap(groupIndex, [] (unsigned, const Bitmap& bitmap) { for (unsigned i = 0; i < bitmap.size(); ++i) kprintf("%c", bitmap.get(i) ? '1' : '0'); return true; }); } template void Ext2FS::traverse_inode_bitmap(unsigned groupIndex, F callback) const { ASSERT(groupIndex <= m_blockGroupCount); auto& bgd = group_descriptor(groupIndex); unsigned inodesInGroup = min(inodes_per_group(), super_block().s_inodes_count); unsigned blockCount = ceilDiv(inodesInGroup, 8u); for (unsigned i = 0; i < blockCount; ++i) { auto block = readBlock(bgd.bg_inode_bitmap + i); ASSERT(block); bool shouldContinue = callback(i * (blockSize() / 8) + 1, Bitmap::wrap(block.pointer(), inodesInGroup)); if (!shouldContinue) break; } } template void Ext2FS::traverse_block_bitmap(unsigned groupIndex, F callback) const { ASSERT(groupIndex <= m_blockGroupCount); auto& bgd = group_descriptor(groupIndex); unsigned blocksInGroup = min(blocks_per_group(), super_block().s_blocks_count); unsigned blockCount = ceilDiv(blocksInGroup, 8u); for (unsigned i = 0; i < blockCount; ++i) { auto block = readBlock(bgd.bg_block_bitmap + i); ASSERT(block); bool shouldContinue = callback(i * (blockSize() / 8) + 1, Bitmap::wrap(block.pointer(), blocksInGroup)); if (!shouldContinue) break; } } bool Ext2FS::write_ext2_inode(unsigned inode, const ext2_inode& e2inode) { unsigned blockIndex; unsigned offset; auto block = read_block_containing_inode(inode, blockIndex, offset); if (!block) return false; memcpy(reinterpret_cast(block.offset_pointer(offset)), &e2inode, inode_size()); writeBlock(blockIndex, block); return true; } Vector Ext2FS::allocate_blocks(unsigned group, unsigned count) { dbgprintf("Ext2FS: allocate_blocks(group: %u, count: %u)\n", group, count); if (count == 0) return { }; auto& bgd = group_descriptor(group); if (bgd.bg_free_blocks_count < count) { kprintf("Ext2FS: allocate_blocks can't allocate out of group %u, wanted %u but only %u available\n", group, count, bgd.bg_free_blocks_count); return { }; } // FIXME: Implement a scan that finds consecutive blocks if possible. Vector blocks; traverse_block_bitmap(group, [&blocks, count] (unsigned first_block_in_bitmap, const Bitmap& bitmap) { for (unsigned i = 0; i < bitmap.size(); ++i) { if (!bitmap.get(i)) { blocks.append(first_block_in_bitmap + i); if (blocks.size() == count) return false; } } return true; }); dbgprintf("Ext2FS: allocate_block found these blocks:\n"); for (auto& bi : blocks) { dbgprintf(" > %u\n", bi); } return blocks; } unsigned Ext2FS::allocate_inode(unsigned preferredGroup, unsigned expectedSize) { dbgprintf("Ext2FS: allocate_inode(preferredGroup: %u, expectedSize: %u)\n", preferredGroup, expectedSize); unsigned neededBlocks = ceilDiv(expectedSize, blockSize()); dbgprintf("Ext2FS: minimum needed blocks: %u\n", neededBlocks); unsigned groupIndex = 0; auto isSuitableGroup = [this, neededBlocks] (unsigned groupIndex) { auto& bgd = group_descriptor(groupIndex); return bgd.bg_free_inodes_count && bgd.bg_free_blocks_count >= neededBlocks; }; if (preferredGroup && isSuitableGroup(preferredGroup)) { groupIndex = preferredGroup; } else { for (unsigned i = 1; i <= m_blockGroupCount; ++i) { if (isSuitableGroup(i)) groupIndex = i; } } if (!groupIndex) { kprintf("Ext2FS: allocate_inode: no suitable group found for new inode with %u blocks needed :(\n", neededBlocks); return 0; } dbgprintf("Ext2FS: allocate_inode: found suitable group [%u] for new inode with %u blocks needed :^)\n", groupIndex, neededBlocks); unsigned firstFreeInodeInGroup = 0; traverse_inode_bitmap(groupIndex, [&firstFreeInodeInGroup] (unsigned firstInodeInBitmap, const Bitmap& bitmap) { for (unsigned i = 0; i < bitmap.size(); ++i) { if (!bitmap.get(i)) { firstFreeInodeInGroup = firstInodeInBitmap + i; return false; } } return true; }); if (!firstFreeInodeInGroup) { kprintf("Ext2FS: first_free_inode_in_group returned no inode, despite bgd claiming there are inodes :(\n"); return 0; } unsigned inode = firstFreeInodeInGroup; dbgprintf("Ext2FS: found suitable inode %u\n", inode); // FIXME: allocate blocks if needed! return inode; } unsigned Ext2FS::group_index_from_inode(unsigned inode) const { if (!inode) return 0; return (inode - 1) / inodes_per_group() + 1; } bool Ext2FS::get_inode_allocation_state(InodeIndex index) const { if (index == 0) return true; auto& bgd = group_descriptor(group_index_from_inode(index)); unsigned inodes_per_bitmap_block = blockSize() * 8; unsigned bitmap_block_index = (index - 1) / inodes_per_bitmap_block; unsigned bit_index = (index - 1) % inodes_per_bitmap_block; auto block = readBlock(bgd.bg_inode_bitmap + bitmap_block_index); ASSERT(block); auto bitmap = Bitmap::wrap(block.pointer(), block.size()); return bitmap.get(bit_index); } bool Ext2FS::set_inode_allocation_state(unsigned index, bool newState) { auto& bgd = group_descriptor(group_index_from_inode(index)); // Update inode bitmap unsigned inodes_per_bitmap_block = blockSize() * 8; unsigned bitmap_block_index = (index - 1) / inodes_per_bitmap_block; unsigned bit_index = (index - 1) % inodes_per_bitmap_block; auto block = readBlock(bgd.bg_inode_bitmap + bitmap_block_index); ASSERT(block); auto bitmap = Bitmap::wrap(block.pointer(), block.size()); bool currentState = bitmap.get(bit_index); dbgprintf("Ext2FS: set_inode_allocation_state(%u) %u -> %u\n", index, currentState, newState); if (currentState == newState) return true; bitmap.set(bit_index, newState); writeBlock(bgd.bg_inode_bitmap + bitmap_block_index, block); // Update superblock auto& sb = *reinterpret_cast(m_cached_super_block.pointer()); dbgprintf("Ext2FS: superblock free inode count %u -> %u\n", sb.s_free_inodes_count, sb.s_free_inodes_count - 1); if (newState) --sb.s_free_inodes_count; else ++sb.s_free_inodes_count; write_super_block(sb); // Update BGD auto& mutableBGD = const_cast(bgd); if (newState) --mutableBGD.bg_free_inodes_count; else ++mutableBGD.bg_free_inodes_count; dbgprintf("Ext2FS: group free inode count %u -> %u\n", bgd.bg_free_inodes_count, bgd.bg_free_inodes_count - 1); unsigned blocksToWrite = ceilDiv(m_blockGroupCount * (unsigned)sizeof(ext2_group_desc), blockSize()); unsigned firstBlockOfBGDT = blockSize() == 1024 ? 2 : 1; writeBlocks(firstBlockOfBGDT, blocksToWrite, m_cached_group_descriptor_table); return true; } bool Ext2FS::set_block_allocation_state(GroupIndex group, BlockIndex bi, bool newState) { dbgprintf("Ext2FS: set_block_allocation_state(group=%u, block=%u, state=%u)\n", group, bi, newState); auto& bgd = group_descriptor(group); // Update block bitmap unsigned blocksPerBitmapBlock = blockSize() * 8; unsigned bitmapBlockIndex = (bi - 1) / blocksPerBitmapBlock; unsigned bitIndex = (bi - 1) % blocksPerBitmapBlock; auto block = readBlock(bgd.bg_block_bitmap + bitmapBlockIndex); ASSERT(block); auto bitmap = Bitmap::wrap(block.pointer(), blocksPerBitmapBlock); bool currentState = bitmap.get(bitIndex); dbgprintf("Ext2FS: block %u state: %u -> %u\n", bi, currentState, newState); if (currentState == newState) return true; bitmap.set(bitIndex, newState); writeBlock(bgd.bg_block_bitmap + bitmapBlockIndex, block); // Update superblock auto& sb = *reinterpret_cast(m_cached_super_block.pointer()); dbgprintf("Ext2FS: superblock free block count %u -> %u\n", sb.s_free_blocks_count, sb.s_free_blocks_count - 1); if (newState) --sb.s_free_blocks_count; else ++sb.s_free_blocks_count; write_super_block(sb); // Update BGD auto& mutableBGD = const_cast(bgd); if (newState) --mutableBGD.bg_free_blocks_count; else ++mutableBGD.bg_free_blocks_count; dbgprintf("Ext2FS: group free block count %u -> %u\n", bgd.bg_free_blocks_count, bgd.bg_free_blocks_count - 1); unsigned blocksToWrite = ceilDiv(m_blockGroupCount * (unsigned)sizeof(ext2_group_desc), blockSize()); unsigned firstBlockOfBGDT = blockSize() == 1024 ? 2 : 1; writeBlocks(firstBlockOfBGDT, blocksToWrite, m_cached_group_descriptor_table); return true; } RetainPtr Ext2FS::create_directory(InodeIdentifier parent_id, const String& name, mode_t mode, int& error) { ASSERT(parent_id.fsid() == fsid()); // Fix up the mode to definitely be a directory. // FIXME: This is a bit on the hackish side. mode &= ~0170000; mode |= 0040000; // NOTE: When creating a new directory, make the size 1 block. // There's probably a better strategy here, but this works for now. auto inode = create_inode(parent_id, name, mode, blockSize(), error); if (!inode) return nullptr; dbgprintf("Ext2FS: create_directory: created new directory named '%s' with inode %u\n", name.characters(), inode->identifier().index()); Vector entries; entries.append({ ".", inode->identifier(), EXT2_FT_DIR }); entries.append({ "..", parent_id, EXT2_FT_DIR }); bool success = write_directory_inode(inode->identifier().index(), move(entries)); ASSERT(success); auto parent_inode = get_inode(parent_id); error = parent_inode->increment_link_count(); if (error < 0) return nullptr; auto& bgd = const_cast(group_descriptor(group_index_from_inode(inode->identifier().index()))); ++bgd.bg_used_dirs_count; dbgprintf("Ext2FS: incremented bg_used_dirs_count %u -> %u\n", bgd.bg_used_dirs_count - 1, bgd.bg_used_dirs_count); unsigned blocksToWrite = ceilDiv(m_blockGroupCount * (unsigned)sizeof(ext2_group_desc), blockSize()); unsigned firstBlockOfBGDT = blockSize() == 1024 ? 2 : 1; writeBlocks(firstBlockOfBGDT, blocksToWrite, m_cached_group_descriptor_table); error = 0; return inode; } RetainPtr Ext2FS::create_inode(InodeIdentifier parent_id, const String& name, mode_t mode, unsigned size, int& error) { ASSERT(parent_id.fsid() == fsid()); auto parent_inode = get_inode(parent_id); dbgprintf("Ext2FS: Adding inode '%s' (mode %u) to parent directory %u:\n", name.characters(), mode, parent_inode->identifier().index()); // NOTE: This doesn't commit the inode allocation just yet! auto inode_id = allocate_inode(0, size); if (!inode_id) { kprintf("Ext2FS: create_inode: allocate_inode failed\n"); error = -ENOSPC; return { }; } auto needed_blocks = ceilDiv(size, blockSize()); auto blocks = allocate_blocks(group_index_from_inode(inode_id), needed_blocks); if (blocks.size() != needed_blocks) { kprintf("Ext2FS: create_inode: allocate_blocks failed\n"); error = -ENOSPC; return { }; } byte fileType = 0; if (isRegularFile(mode)) fileType = EXT2_FT_REG_FILE; else if (isDirectory(mode)) fileType = EXT2_FT_DIR; else if (isCharacterDevice(mode)) fileType = EXT2_FT_CHRDEV; else if (isBlockDevice(mode)) fileType = EXT2_FT_BLKDEV; else if (isFIFO(mode)) fileType = EXT2_FT_FIFO; else if (isSocket(mode)) fileType = EXT2_FT_SOCK; else if (isSymbolicLink(mode)) fileType = EXT2_FT_SYMLINK; // Try adding it to the directory first, in case the name is already in use. bool success = parent_inode->add_child({ fsid(), inode_id }, name, fileType, error); if (!success) return { }; // Looks like we're good, time to update the inode bitmap and group+global inode counters. success = set_inode_allocation_state(inode_id, true); ASSERT(success); for (auto bi : blocks) { success = set_block_allocation_state(group_index_from_inode(inode_id), bi, true); ASSERT(success); } unsigned initialLinksCount; if (isDirectory(mode)) initialLinksCount = 2; // (parent directory + "." entry in self) else initialLinksCount = 1; auto timestamp = RTC::now(); auto e2inode = make(); memset(e2inode.ptr(), 0, sizeof(ext2_inode)); e2inode->i_mode = mode; e2inode->i_uid = 0; e2inode->i_size = size; e2inode->i_atime = timestamp; e2inode->i_ctime = timestamp; e2inode->i_mtime = timestamp; e2inode->i_dtime = 0; e2inode->i_gid = 0; e2inode->i_links_count = initialLinksCount; success = write_block_list_for_inode(inode_id, *e2inode, blocks); ASSERT(success); dbgprintf("Ext2FS: writing initial metadata for inode %u\n", inode_id); e2inode->i_flags = 0; success = write_ext2_inode(inode_id, *e2inode); ASSERT(success); { // We might have cached the fact that this inode didn't exist. Wipe the slate. LOCKER(m_inode_cache_lock); m_inode_cache.remove(inode_id); } return get_inode({ fsid(), inode_id }); } RetainPtr Ext2FSInode::parent() const { if (m_parent_id.is_valid()) return fs().get_inode(m_parent_id); unsigned group_index = fs().group_index_from_inode(index()); unsigned first_inode_in_group = fs().inodes_per_group() * (group_index - 1); Vector> directories_in_group; for (unsigned i = 0; i < fs().inodes_per_group(); ++i) { auto group_member = fs().get_inode({ fsid(), first_inode_in_group + i }); if (!group_member) continue; if (group_member->is_directory()) directories_in_group.append(move(group_member)); } for (auto& directory : directories_in_group) { if (!directory->reverse_lookup(identifier()).is_null()) { m_parent_id = directory->identifier(); break; } } ASSERT(m_parent_id.is_valid()); return fs().get_inode(m_parent_id); } void Ext2FSInode::populate_lookup_cache() { { LOCKER(m_lock); if (!m_lookup_cache.is_empty()) return; } HashMap children; traverse_as_directory([&children] (auto& entry) { children.set(String(entry.name, entry.name_length), entry.inode.index()); return true; }); LOCKER(m_lock); if (!m_lookup_cache.is_empty()) return; m_lookup_cache = move(children); } InodeIdentifier Ext2FSInode::lookup(const String& name) { ASSERT(is_directory()); populate_lookup_cache(); LOCKER(m_lock); auto it = m_lookup_cache.find(name); if (it != m_lookup_cache.end()) return { fsid(), (*it).value }; return { }; } String Ext2FSInode::reverse_lookup(InodeIdentifier child_id) { ASSERT(is_directory()); ASSERT(child_id.fsid() == fsid()); populate_lookup_cache(); LOCKER(m_lock); for (auto it : m_lookup_cache) { if (it.value == child_id.index()) return it.key; } return { }; } void Ext2FSInode::one_retain_left() { // FIXME: I would like to not live forever, but uncached Ext2FS is fucking painful right now. } int Ext2FSInode::set_atime(time_t t) { if (fs().is_readonly()) return -EROFS; m_raw_inode.i_atime = t; set_metadata_dirty(true); return 0; } int Ext2FSInode::set_ctime(time_t t) { if (fs().is_readonly()) return -EROFS; m_raw_inode.i_ctime = t; set_metadata_dirty(true); return 0; } int Ext2FSInode::set_mtime(time_t t) { if (fs().is_readonly()) return -EROFS; m_raw_inode.i_mtime = t; set_metadata_dirty(true); return 0; } int Ext2FSInode::increment_link_count() { if (fs().is_readonly()) return -EROFS; ++m_raw_inode.i_links_count; set_metadata_dirty(true); return 0; } int Ext2FSInode::decrement_link_count() { if (fs().is_readonly()) return -EROFS; ASSERT(m_raw_inode.i_links_count); --m_raw_inode.i_links_count; if (m_raw_inode.i_links_count == 0) fs().uncache_inode(index()); set_metadata_dirty(true); return 0; } void Ext2FS::uncache_inode(InodeIndex index) { LOCKER(m_inode_cache_lock); m_inode_cache.remove(index); }