#include "KSyms.h" #include "Process.h" #include "Scheduler.h" static KSym* s_ksyms; dword ksym_lowest_address; dword ksym_highest_address; dword ksym_count; bool ksyms_ready; static byte parse_hex_digit(char nibble) { if (nibble >= '0' && nibble <= '9') return nibble - '0'; ASSERT(nibble >= 'a' && nibble <= 'f'); return 10 + (nibble - 'a'); } const KSym* ksymbolicate(dword address) { if (address < ksym_lowest_address || address > ksym_highest_address) return nullptr; for (unsigned i = 0; i < ksym_count; ++i) { if (address < s_ksyms[i + 1].address) return &s_ksyms[i]; } return nullptr; } static void load_ksyms_from_data(const ByteBuffer& buffer) { auto* bufptr = (const char*)buffer.pointer(); auto* start_of_name = bufptr; dword address = 0; for (unsigned i = 0; i < 8; ++i) ksym_count = (ksym_count << 4) | parse_hex_digit(*(bufptr++)); s_ksyms = static_cast(kmalloc_eternal(sizeof(KSym) * ksym_count)); ++bufptr; // skip newline kprintf("Loading ksyms..."); unsigned current_ksym_index = 0; while (bufptr < buffer.end_pointer()) { for (unsigned i = 0; i < 8; ++i) address = (address << 4) | parse_hex_digit(*(bufptr++)); bufptr += 3; start_of_name = bufptr; while (*(++bufptr)) { if (*bufptr == '\n') { break; } } auto& ksym = s_ksyms[current_ksym_index]; ksym.address = address; char* name = static_cast(kmalloc_eternal((bufptr - start_of_name) + 1)); memcpy(name, start_of_name, bufptr - start_of_name); name[bufptr - start_of_name] = '\0'; ksym.name = name; if (ksym.address < ksym_lowest_address) ksym_lowest_address = ksym.address; if (ksym.address > ksym_highest_address) ksym_highest_address = ksym.address; ++bufptr; ++current_ksym_index; } kprintf("ok\n"); ksyms_ready = true; } [[gnu::noinline]] void dump_backtrace_impl(dword ebp, bool use_ksyms) { if (!current) { hang(); return; } if (use_ksyms && !ksyms_ready) { hang(); return; } struct RecognizedSymbol { dword address; const KSym* ksym; }; Vector recognized_symbols; if (use_ksyms) { for (dword* stack_ptr = (dword*)ebp; current->validate_read_from_kernel(LinearAddress((dword)stack_ptr)); stack_ptr = (dword*)*stack_ptr) { dword retaddr = stack_ptr[1]; if (auto* ksym = ksymbolicate(retaddr)) recognized_symbols.append({ retaddr, ksym }); } } else{ for (dword* stack_ptr = (dword*)ebp; current->validate_read_from_kernel(LinearAddress((dword)stack_ptr)); stack_ptr = (dword*)*stack_ptr) { dword retaddr = stack_ptr[1]; kprintf("%x (next: %x)\n", retaddr, stack_ptr ? (dword*)*stack_ptr : 0); } return; } size_t bytes_needed = 0; for (auto& symbol : recognized_symbols) { bytes_needed += strlen(symbol.ksym->name) + 8 + 16; } for (auto& symbol : recognized_symbols) { unsigned offset = symbol.address - symbol.ksym->address; kprintf("%p %s +%u\n", symbol.address, symbol.ksym->name, offset); } } void dump_backtrace(bool use_ksyms) { dword ebp; asm volatile("movl %%ebp, %%eax":"=a"(ebp)); dump_backtrace_impl(ebp, use_ksyms); } void init_ksyms() { ksyms_ready = false; ksym_lowest_address = 0xffffffff; ksym_highest_address = 0; ksym_count = 0; } void load_ksyms() { auto result = VFS::the().open("/kernel.map", 0, 0, *VFS::the().root_inode()); ASSERT(!result.is_error()); auto descriptor = result.value(); auto buffer = descriptor->read_entire_file(*current); ASSERT(buffer); load_ksyms_from_data(buffer); }