/* * Copyright (c) 2021, Liav A. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include namespace Kernel { NonnullRefPtr AHCIPort::ScatterList::create(AsyncBlockDeviceRequest& request, NonnullRefPtrVector allocated_pages, size_t device_block_size) { return adopt(*new ScatterList(request, allocated_pages, device_block_size)); } AHCIPort::ScatterList::ScatterList(AsyncBlockDeviceRequest& request, NonnullRefPtrVector allocated_pages, size_t device_block_size) : m_vm_object(AnonymousVMObject::create_with_physical_pages(allocated_pages)) { m_dma_region = MM.allocate_kernel_region_with_vmobject(m_vm_object, page_round_up((request.block_count() * device_block_size)), "AHCI Scattered DMA", Region::Access::Read | Region::Access::Write, Region::Cacheable::Yes); } NonnullRefPtr AHCIPort::create(const AHCIPortHandler& handler, volatile AHCI::PortRegisters& registers, u32 port_index) { return adopt(*new AHCIPort(handler, registers, port_index)); } AHCIPort::AHCIPort(const AHCIPortHandler& handler, volatile AHCI::PortRegisters& registers, u32 port_index) : m_port_index(port_index) , m_port_registers(registers) , m_parent_handler(handler) , m_interrupt_status((volatile u32&)m_port_registers.is) , m_interrupt_enable((volatile u32&)m_port_registers.ie) { if (is_interface_disabled()) { m_disabled_by_firmware = true; return; } m_command_list_page = MM.allocate_supervisor_physical_page(); m_fis_receive_page = MM.allocate_supervisor_physical_page(); if (m_command_list_page.is_null() || m_fis_receive_page.is_null()) return; dbgln_if(AHCI_DEBUG, "AHCI Port {}: Command list page at {}", representative_port_index(), m_command_list_page->paddr()); dbgln_if(AHCI_DEBUG, "AHCI Port {}: FIS receive page at {}", representative_port_index(), m_command_list_page->paddr()); for (size_t index = 0; index < 1; index++) { m_dma_buffers.append(MM.allocate_supervisor_physical_page().release_nonnull()); } for (size_t index = 0; index < 1; index++) { m_command_table_pages.append(MM.allocate_supervisor_physical_page().release_nonnull()); } m_command_list_region = MM.allocate_kernel_region(m_command_list_page->paddr(), PAGE_SIZE, "AHCI Port Command List", Region::Access::Read | Region::Access::Write, Region::Cacheable::No); dbgln_if(AHCI_DEBUG, "AHCI Port {}: Command list region at {}", representative_port_index(), m_command_list_region->vaddr()); m_interrupt_enable.set_all(); } void AHCIPort::clear_sata_error_register() const { dbgln_if(AHCI_DEBUG, "AHCI Port {}: Clearing SATA error register.", representative_port_index()); m_port_registers.serr = m_port_registers.serr; } void AHCIPort::handle_interrupt() { dbgln_if(AHCI_DEBUG, "AHCI Port {}: Interrupt handled, PxIS {}", representative_port_index(), m_interrupt_status.raw_value()); if (m_interrupt_status.raw_value() == 0) { return; } if (m_interrupt_status.is_set(AHCI::PortInterruptFlag::PRC) && m_interrupt_status.is_set(AHCI::PortInterruptFlag::PC)) { clear_sata_error_register(); m_wait_connect_for_completion = true; } if (m_interrupt_status.is_set(AHCI::PortInterruptFlag::INF)) { // We need to defer the reset, because we can receive interrupts when // resetting the device. g_io_work->queue([this]() { reset(); }); return; } if (m_interrupt_status.is_set(AHCI::PortInterruptFlag::IF) || m_interrupt_status.is_set(AHCI::PortInterruptFlag::TFE) || m_interrupt_status.is_set(AHCI::PortInterruptFlag::HBD) || m_interrupt_status.is_set(AHCI::PortInterruptFlag::HBF)) { g_io_work->queue([this]() { recover_from_fatal_error(); }); return; } if (m_interrupt_status.is_set(AHCI::PortInterruptFlag::DHR) || m_interrupt_status.is_set(AHCI::PortInterruptFlag::PS)) { m_wait_for_completion = false; // Now schedule reading/writing the buffer as soon as we leave the irq handler. // This is important so that we can safely access the buffers, which could // trigger page faults if (!m_current_request) { dbgln_if(AHCI_DEBUG, "AHCI Port {}: Request handled, probably identify request", representative_port_index()); } else { g_io_work->queue([this]() { dbgln_if(AHCI_DEBUG, "AHCI Port {}: Request handled", representative_port_index()); LOCKER(m_lock); VERIFY(m_current_request); VERIFY(m_current_scatter_list); if (m_current_request->request_type() == AsyncBlockDeviceRequest::Read) { if (!m_current_request->write_to_buffer(m_current_request->buffer(), m_current_scatter_list->dma_region().as_ptr(), m_connected_device->block_size() * m_current_request->block_count())) { dbgln_if(AHCI_DEBUG, "AHCI Port {}: Request failure, memory fault occurred when reading in data.", representative_port_index()); m_current_scatter_list = nullptr; complete_current_request(AsyncDeviceRequest::MemoryFault); return; } } m_current_scatter_list = nullptr; dbgln_if(AHCI_DEBUG, "AHCI Port {}: Request success", representative_port_index()); complete_current_request(AsyncDeviceRequest::Success); }); } } m_interrupt_status.clear(); } bool AHCIPort::is_interrupts_enabled() const { return !m_interrupt_enable.is_cleared(); } void AHCIPort::recover_from_fatal_error() { LOCKER(m_lock); ScopedSpinLock lock(m_hard_lock); dmesgln("{}: AHCI Port {} fatal error, shutting down!", m_parent_handler->hba_controller()->pci_address(), representative_port_index()); dmesgln("{}: AHCI Port {} fatal error, SError {}", m_parent_handler->hba_controller()->pci_address(), representative_port_index(), (u32)m_port_registers.serr); stop_command_list_processing(); stop_fis_receiving(); m_interrupt_enable.clear(); } void AHCIPort::eject() { // FIXME: This operation (meant to be used on optical drives) doesn't work yet when I tested it on real hardware TODO(); VERIFY(m_lock.is_locked()); VERIFY(is_atapi_attached()); VERIFY(is_operable()); clear_sata_error_register(); if (!spin_until_ready()) return; auto unused_command_header = try_to_find_unused_command_header(); VERIFY(unused_command_header.has_value()); auto* command_list_entries = (volatile AHCI::CommandHeader*)m_command_list_region->vaddr().as_ptr(); command_list_entries[unused_command_header.value()].ctba = m_command_table_pages[unused_command_header.value()].paddr().get(); command_list_entries[unused_command_header.value()].ctbau = 0; command_list_entries[unused_command_header.value()].prdbc = 0; command_list_entries[unused_command_header.value()].prdtl = 0; // Note: we must set the correct Dword count in this register. Real hardware // AHCI controllers do care about this field! QEMU doesn't care if we don't // set the correct CFL field in this register, real hardware will set an // handshake error bit in PxSERR register if CFL is incorrect. command_list_entries[unused_command_header.value()].attributes = (size_t)FIS::DwordCount::RegisterHostToDevice | AHCI::CommandHeaderAttributes::P | AHCI::CommandHeaderAttributes::C | AHCI::CommandHeaderAttributes::A; auto command_table_region = MM.allocate_kernel_region(m_command_table_pages[unused_command_header.value()].paddr().page_base(), page_round_up(sizeof(AHCI::CommandTable)), "AHCI Command Table", Region::Access::Read | Region::Access::Write, Region::Cacheable::No); auto& command_table = *(volatile AHCI::CommandTable*)command_table_region->vaddr().as_ptr(); memset(const_cast(command_table.command_fis), 0, 64); auto& fis = *(volatile FIS::HostToDevice::Register*)command_table.command_fis; fis.header.fis_type = (u8)FIS::Type::RegisterHostToDevice; fis.command = ATA_CMD_PACKET; full_memory_barrier(); memset(const_cast(command_table.atapi_command), 0, 32); full_memory_barrier(); command_table.atapi_command[0] = ATAPI_CMD_EJECT; command_table.atapi_command[1] = 0; command_table.atapi_command[2] = 0; command_table.atapi_command[3] = 0; command_table.atapi_command[4] = 0b10; command_table.atapi_command[5] = 0; command_table.atapi_command[6] = 0; command_table.atapi_command[7] = 0; command_table.atapi_command[8] = 0; command_table.atapi_command[9] = 0; command_table.atapi_command[10] = 0; command_table.atapi_command[11] = 0; fis.device = 0; fis.header.port_muliplier = fis.header.port_muliplier | (u8)FIS::HeaderAttributes::C; // The below loop waits until the port is no longer busy before issuing a new command if (!spin_until_ready()) return; full_memory_barrier(); mark_command_header_ready_to_process(unused_command_header.value()); full_memory_barrier(); while (1) { if (m_port_registers.serr != 0) { dbgln_if(AHCI_DEBUG, "AHCI Port {}: Eject Drive failed, SError 0x{:08x}", representative_port_index(), (u32)m_port_registers.serr); try_disambiguate_sata_error(); VERIFY_NOT_REACHED(); } } dbgln("AHCI Port {}: Eject Drive", representative_port_index()); return; } bool AHCIPort::reset() { LOCKER(m_lock); ScopedSpinLock lock(m_hard_lock); dbgln_if(AHCI_DEBUG, "AHCI Port {}: Resetting", representative_port_index()); if (m_disabled_by_firmware) { dmesgln("AHCI Port {}: Disabled by firmware ", representative_port_index()); return false; } full_memory_barrier(); m_interrupt_enable.clear(); m_interrupt_status.clear(); full_memory_barrier(); start_fis_receiving(); full_memory_barrier(); clear_sata_error_register(); full_memory_barrier(); if (!initiate_sata_reset(lock)) { return false; } return initialize(lock); } bool AHCIPort::initialize_without_reset() { LOCKER(m_lock); ScopedSpinLock lock(m_hard_lock); dmesgln("AHCI Port {}: {}", representative_port_index(), try_disambiguate_sata_status()); return initialize(lock); } bool AHCIPort::initialize(ScopedSpinLock>& main_lock) { VERIFY(m_lock.is_locked()); dbgln_if(AHCI_DEBUG, "AHCI Port {}: Initialization. Signature = 0x{:08x}", representative_port_index(), static_cast(m_port_registers.sig)); if (!is_phy_enabled()) { dbgln_if(AHCI_DEBUG, "AHCI Port {}: Bailing initialization, Phy is not enabled.", representative_port_index()); return false; } rebase(); power_on(); spin_up(); clear_sata_error_register(); start_fis_receiving(); set_active_state(); m_interrupt_status.clear(); m_interrupt_enable.set_all(); full_memory_barrier(); // This actually enables the port... start_command_list_processing(); full_memory_barrier(); size_t logical_sector_size = 512; size_t physical_sector_size = 512; u64 max_addressable_sector = 0; if (identify_device(main_lock)) { auto identify_block = map_typed(m_parent_handler->get_identify_metadata_physical_region(m_port_index)); // Check if word 106 is valid before using it! if ((identify_block->physical_sector_size_to_logical_sector_size >> 14) == 1) { if (identify_block->physical_sector_size_to_logical_sector_size & (1 << 12)) { VERIFY(identify_block->logical_sector_size != 0); logical_sector_size = identify_block->logical_sector_size; } if (identify_block->physical_sector_size_to_logical_sector_size & (1 << 13)) { physical_sector_size = logical_sector_size << (identify_block->physical_sector_size_to_logical_sector_size & 0xf); } } // Check if the device supports LBA48 mode if (identify_block->commands_and_feature_sets_supported[1] & (1 << 10)) { max_addressable_sector = identify_block->user_addressable_logical_sectors_count; } else { max_addressable_sector = identify_block->max_28_bit_addressable_logical_sector; } if (is_atapi_attached()) { m_port_registers.cmd = m_port_registers.cmd | (1 << 24); } dmesgln("AHCI Port {}: Device found, Capacity={}, Bytes per logical sector={}, Bytes per physical sector={}", representative_port_index(), max_addressable_sector * logical_sector_size, logical_sector_size, physical_sector_size); // FIXME: We don't support ATAPI devices yet, so for now we don't "create" them if (!is_atapi_attached()) { m_connected_device = SATADiskDevice::create(m_parent_handler->hba_controller(), *this, logical_sector_size, max_addressable_sector); } else { dbgln("AHCI Port {}: Ignoring ATAPI devices for now as we don't currently support them.", representative_port_index()); } } return true; } const char* AHCIPort::try_disambiguate_sata_status() { switch (m_port_registers.ssts & 0xf) { case 0: return "Device not detected, Phy not enabled"; case 1: return "Device detected, Phy disabled"; case 3: return "Device detected, Phy enabled"; case 4: return "interface disabled"; } VERIFY_NOT_REACHED(); } void AHCIPort::try_disambiguate_sata_error() { dmesgln("AHCI Port {}: SErr breakdown:", representative_port_index()); dmesgln("AHCI Port {}: Diagnostics:", representative_port_index()); constexpr u32 diagnostics_bitfield = 0xFFFF0000; if ((m_port_registers.serr & diagnostics_bitfield) > 0) { if (m_port_registers.serr & AHCI::SErr::DIAG_X) dmesgln("AHCI Port {}: - Exchanged", representative_port_index()); if (m_port_registers.serr & AHCI::SErr::DIAG_F) dmesgln("AHCI Port {}: - Unknown FIS Type", representative_port_index()); if (m_port_registers.serr & AHCI::SErr::DIAG_T) dmesgln("AHCI Port {}: - Transport state transition error", representative_port_index()); if (m_port_registers.serr & AHCI::SErr::DIAG_S) dmesgln("AHCI Port {}: - Link sequence error", representative_port_index()); if (m_port_registers.serr & AHCI::SErr::DIAG_H) dmesgln("AHCI Port {}: - Handshake error", representative_port_index()); if (m_port_registers.serr & AHCI::SErr::DIAG_C) dmesgln("AHCI Port {}: - CRC error", representative_port_index()); if (m_port_registers.serr & AHCI::SErr::DIAG_D) dmesgln("AHCI Port {}: - Disparity error", representative_port_index()); if (m_port_registers.serr & AHCI::SErr::DIAG_B) dmesgln("AHCI Port {}: - 10B to 8B decode error", representative_port_index()); if (m_port_registers.serr & AHCI::SErr::DIAG_W) dmesgln("AHCI Port {}: - Comm Wake", representative_port_index()); if (m_port_registers.serr & AHCI::SErr::DIAG_I) dmesgln("AHCI Port {}: - Phy Internal Error", representative_port_index()); if (m_port_registers.serr & AHCI::SErr::DIAG_N) dmesgln("AHCI Port {}: - PhyRdy Change", representative_port_index()); } else { dmesgln("AHCI Port {}: - No diagnostic information provided.", representative_port_index()); } dmesgln("AHCI Port {}: Error(s):", representative_port_index()); constexpr u32 error_bitfield = 0xFFFF; if ((m_port_registers.serr & error_bitfield) > 0) { if (m_port_registers.serr & AHCI::SErr::ERR_E) dmesgln("AHCI Port {}: - Internal error", representative_port_index()); if (m_port_registers.serr & AHCI::SErr::ERR_P) dmesgln("AHCI Port {}: - Protocol error", representative_port_index()); if (m_port_registers.serr & AHCI::SErr::ERR_C) dmesgln("AHCI Port {}: - Persistent communication or data integrity error", representative_port_index()); if (m_port_registers.serr & AHCI::SErr::ERR_T) dmesgln("AHCI Port {}: - Transient data integrity error", representative_port_index()); if (m_port_registers.serr & AHCI::SErr::ERR_M) dmesgln("AHCI Port {}: - Received communications error", representative_port_index()); if (m_port_registers.serr & AHCI::SErr::ERR_I) dmesgln("AHCI Port {}: - Recovered data integrity error", representative_port_index()); } else { dmesgln("AHCI Port {}: - No error information provided.", representative_port_index()); } } void AHCIPort::rebase() { VERIFY(m_lock.is_locked()); VERIFY(m_hard_lock.is_locked()); VERIFY(!m_command_list_page.is_null() && !m_fis_receive_page.is_null()); dbgln_if(AHCI_DEBUG, "AHCI Port {}: Rebasing.", representative_port_index()); full_memory_barrier(); stop_command_list_processing(); stop_fis_receiving(); full_memory_barrier(); size_t retry = 0; // Try to wait 1 second for HBA to clear Command List Running and FIS Receive Running while (retry < 1000) { if (!(m_port_registers.cmd & (1 << 15)) && !(m_port_registers.cmd & (1 << 14))) break; IO::delay(1000); retry++; } full_memory_barrier(); m_port_registers.clbu = 0; m_port_registers.clb = m_command_list_page->paddr().get(); m_port_registers.fbu = 0; m_port_registers.fb = m_fis_receive_page->paddr().get(); } bool AHCIPort::is_operable() const { // Note: The definition of "operable" is somewhat ambiguous, but we determine it // by 3 parameters as shown below. return (!m_command_list_page.is_null()) && (!m_fis_receive_page.is_null()) && ((m_port_registers.cmd & (1 << 14)) != 0); } void AHCIPort::set_active_state() const { VERIFY(m_lock.is_locked()); VERIFY(m_hard_lock.is_locked()); dbgln_if(AHCI_DEBUG, "AHCI Port {}: Switching to active state.", representative_port_index()); m_port_registers.cmd = (m_port_registers.cmd & 0x0ffffff) | (1 << 28); } void AHCIPort::set_sleep_state() const { VERIFY(m_lock.is_locked()); VERIFY(m_hard_lock.is_locked()); m_port_registers.cmd = (m_port_registers.cmd & 0x0ffffff) | (0b1000 << 28); } size_t AHCIPort::calculate_descriptors_count(size_t block_count) const { VERIFY(m_connected_device); size_t needed_dma_regions_count = page_round_up((block_count * m_connected_device->block_size())) / PAGE_SIZE; VERIFY(needed_dma_regions_count <= m_dma_buffers.size()); return needed_dma_regions_count; } Optional AHCIPort::prepare_and_set_scatter_list(AsyncBlockDeviceRequest& request) { VERIFY(m_lock.is_locked()); VERIFY(request.block_count() > 0); NonnullRefPtrVector allocated_dma_regions; for (size_t index = 0; index < calculate_descriptors_count(request.block_count()); index++) { allocated_dma_regions.append(m_dma_buffers.at(index)); } m_current_scatter_list = ScatterList::create(request, allocated_dma_regions, m_connected_device->block_size()); if (request.request_type() == AsyncBlockDeviceRequest::Write) { if (!request.read_from_buffer(request.buffer(), m_current_scatter_list->dma_region().as_ptr(), m_connected_device->block_size() * request.block_count())) { return AsyncDeviceRequest::MemoryFault; } } return {}; } void AHCIPort::start_request(AsyncBlockDeviceRequest& request) { LOCKER(m_lock); dbgln_if(AHCI_DEBUG, "AHCI Port {}: Request start", representative_port_index()); VERIFY(!m_current_request); VERIFY(!m_current_scatter_list); m_current_request = request; auto result = prepare_and_set_scatter_list(request); if (result.has_value()) { dbgln_if(AHCI_DEBUG, "AHCI Port {}: Request failure.", representative_port_index()); m_lock.unlock(); complete_current_request(result.value()); return; } auto success = access_device(request.request_type(), request.block_index(), request.block_count()); if (!success) { dbgln_if(AHCI_DEBUG, "AHCI Port {}: Request failure.", representative_port_index()); m_lock.unlock(); complete_current_request(AsyncDeviceRequest::Failure); return; } } void AHCIPort::complete_current_request(AsyncDeviceRequest::RequestResult result) { VERIFY(m_current_request); auto current_request = m_current_request; m_current_request.clear(); current_request->complete(result); } bool AHCIPort::spin_until_ready() const { VERIFY(m_lock.is_locked()); size_t spin = 0; dbgln_if(AHCI_DEBUG, "AHCI Port {}: Spinning until ready.", representative_port_index()); while ((m_port_registers.tfd & (ATA_SR_BSY | ATA_SR_DRQ)) && spin <= 100) { IO::delay(1000); spin++; } if (spin == 100) { dbgln_if(AHCI_DEBUG, "AHCI Port {}: SPIN exceeded 100 miliseconds threshold", representative_port_index()); return false; } return true; } bool AHCIPort::access_device(AsyncBlockDeviceRequest::RequestType direction, u64 lba, u8 block_count) { VERIFY(m_connected_device); VERIFY(is_operable()); VERIFY(m_lock.is_locked()); VERIFY(m_current_scatter_list); ScopedSpinLock lock(m_hard_lock); dbgln_if(AHCI_DEBUG, "AHCI Port {}: Do a {}, lba {}, block count {}", representative_port_index(), direction == AsyncBlockDeviceRequest::RequestType::Write ? "write" : "read", lba, block_count); if (!spin_until_ready()) return false; auto unused_command_header = try_to_find_unused_command_header(); VERIFY(unused_command_header.has_value()); auto* command_list_entries = (volatile AHCI::CommandHeader*)m_command_list_region->vaddr().as_ptr(); command_list_entries[unused_command_header.value()].ctba = m_command_table_pages[unused_command_header.value()].paddr().get(); command_list_entries[unused_command_header.value()].ctbau = 0; command_list_entries[unused_command_header.value()].prdbc = 0; command_list_entries[unused_command_header.value()].prdtl = m_current_scatter_list->scatters_count(); // Note: we must set the correct Dword count in this register. Real hardware // AHCI controllers do care about this field! QEMU doesn't care if we don't // set the correct CFL field in this register, real hardware will set an // handshake error bit in PxSERR register if CFL is incorrect. command_list_entries[unused_command_header.value()].attributes = (size_t)FIS::DwordCount::RegisterHostToDevice | AHCI::CommandHeaderAttributes::P | AHCI::CommandHeaderAttributes::C | (is_atapi_attached() ? AHCI::CommandHeaderAttributes::A : 0) | (direction == AsyncBlockDeviceRequest::RequestType::Write ? AHCI::CommandHeaderAttributes::W : 0); dbgln_if(AHCI_DEBUG, "AHCI Port {}: CLE: ctba=0x{:08x}, ctbau=0x{:08x}, prdbc=0x{:08x}, prdtl=0x{:04x}, attributes=0x{:04x}", representative_port_index(), (u32)command_list_entries[unused_command_header.value()].ctba, (u32)command_list_entries[unused_command_header.value()].ctbau, (u32)command_list_entries[unused_command_header.value()].prdbc, (u16)command_list_entries[unused_command_header.value()].prdtl, (u16)command_list_entries[unused_command_header.value()].attributes); auto command_table_region = MM.allocate_kernel_region(m_command_table_pages[unused_command_header.value()].paddr().page_base(), page_round_up(sizeof(AHCI::CommandTable)), "AHCI Command Table", Region::Access::Read | Region::Access::Write, Region::Cacheable::No); auto& command_table = *(volatile AHCI::CommandTable*)command_table_region->vaddr().as_ptr(); dbgln_if(AHCI_DEBUG, "AHCI Port {}: Allocated command table at {}", representative_port_index(), command_table_region->vaddr()); memset(const_cast(command_table.command_fis), 0, 64); size_t scatter_entry_index = 0; size_t data_transfer_count = (block_count * m_connected_device->block_size()); for (auto scatter_page : m_current_scatter_list->vmobject().physical_pages()) { VERIFY(data_transfer_count != 0); VERIFY(scatter_page); dbgln_if(AHCI_DEBUG, "AHCI Port {}: Add a transfer scatter entry @ {}", representative_port_index(), scatter_page->paddr()); command_table.descriptors[scatter_entry_index].base_high = 0; command_table.descriptors[scatter_entry_index].base_low = scatter_page->paddr().get(); if (data_transfer_count <= PAGE_SIZE) { command_table.descriptors[scatter_entry_index].byte_count = data_transfer_count - 1; data_transfer_count = 0; } else { command_table.descriptors[scatter_entry_index].byte_count = PAGE_SIZE - 1; data_transfer_count -= PAGE_SIZE; } scatter_entry_index++; } command_table.descriptors[scatter_entry_index].byte_count = (PAGE_SIZE - 1) | (1 << 31); memset(const_cast(command_table.atapi_command), 0, 32); auto& fis = *(volatile FIS::HostToDevice::Register*)command_table.command_fis; fis.header.fis_type = (u8)FIS::Type::RegisterHostToDevice; if (is_atapi_attached()) { fis.command = ATA_CMD_PACKET; TODO(); } else { if (direction == AsyncBlockDeviceRequest::RequestType::Write) fis.command = ATA_CMD_WRITE_DMA_EXT; else fis.command = ATA_CMD_READ_DMA_EXT; } full_memory_barrier(); fis.device = ATA_USE_LBA_ADDRESSING; fis.header.port_muliplier = (u8)FIS::HeaderAttributes::C; fis.lba_high[0] = (lba >> 24) & 0xff; fis.lba_high[1] = (lba >> 32) & 0xff; fis.lba_high[2] = (lba >> 40) & 0xff; fis.lba_low[0] = lba & 0xff; fis.lba_low[1] = (lba >> 8) & 0xff; fis.lba_low[2] = (lba >> 16) & 0xff; fis.count = (block_count); // The below loop waits until the port is no longer busy before issuing a new command if (!spin_until_ready()) return false; full_memory_barrier(); mark_command_header_ready_to_process(unused_command_header.value()); full_memory_barrier(); dbgln_if(AHCI_DEBUG, "AHCI Port {}: Do a {}, lba {}, block count {} @ {}, ended", representative_port_index(), direction == AsyncBlockDeviceRequest::RequestType::Write ? "write" : "read", lba, block_count, m_dma_buffers[0].paddr()); return true; } bool AHCIPort::identify_device(ScopedSpinLock>& main_lock) { VERIFY(m_lock.is_locked()); VERIFY(is_operable()); if (!spin_until_ready()) return false; auto unused_command_header = try_to_find_unused_command_header(); VERIFY(unused_command_header.has_value()); auto* command_list_entries = (volatile AHCI::CommandHeader*)m_command_list_region->vaddr().as_ptr(); command_list_entries[unused_command_header.value()].ctba = m_command_table_pages[unused_command_header.value()].paddr().get(); command_list_entries[unused_command_header.value()].ctbau = 0; command_list_entries[unused_command_header.value()].prdbc = 512; command_list_entries[unused_command_header.value()].prdtl = 1; // Note: we must set the correct Dword count in this register. Real hardware AHCI controllers do care about this field! // QEMU doesn't care if we don't set the correct CFL field in this register, real hardware will set an handshake error bit in PxSERR register. command_list_entries[unused_command_header.value()].attributes = (size_t)FIS::DwordCount::RegisterHostToDevice | AHCI::CommandHeaderAttributes::P | AHCI::CommandHeaderAttributes::C; auto command_table_region = MM.allocate_kernel_region(m_command_table_pages[unused_command_header.value()].paddr().page_base(), page_round_up(sizeof(AHCI::CommandTable)), "AHCI Command Table", Region::Access::Read | Region::Access::Write); auto& command_table = *(volatile AHCI::CommandTable*)command_table_region->vaddr().as_ptr(); memset(const_cast(command_table.command_fis), 0, 64); command_table.descriptors[0].base_high = 0; command_table.descriptors[0].base_low = m_parent_handler->get_identify_metadata_physical_region(m_port_index).get(); command_table.descriptors[0].byte_count = 512 - 1; auto& fis = *(volatile FIS::HostToDevice::Register*)command_table.command_fis; fis.header.fis_type = (u8)FIS::Type::RegisterHostToDevice; fis.command = m_port_registers.sig == AHCI::DeviceSignature::ATAPI ? ATA_CMD_IDENTIFY_PACKET : ATA_CMD_IDENTIFY; fis.device = 0; fis.header.port_muliplier = fis.header.port_muliplier | (u8)FIS::HeaderAttributes::C; // The below loop waits until the port is no longer busy before issuing a new command if (!spin_until_ready()) return false; // FIXME: Find a better way to send IDENTIFY DEVICE and getting an interrupt! { main_lock.unlock(); VERIFY_INTERRUPTS_ENABLED(); full_memory_barrier(); m_wait_for_completion = true; dbgln_if(AHCI_DEBUG, "AHCI Port {}: Marking command header at index {} as ready to identify device", representative_port_index(), unused_command_header.value()); m_port_registers.ci = 1 << unused_command_header.value(); full_memory_barrier(); while (1) { if (m_port_registers.serr != 0) { dbgln("AHCI Port {}: Identify failed, SError 0x{:08x}", representative_port_index(), (u32)m_port_registers.serr); try_disambiguate_sata_error(); return false; } if (!m_wait_for_completion) break; } main_lock.lock(); } return true; } bool AHCIPort::shutdown() { LOCKER(m_lock); ScopedSpinLock lock(m_hard_lock); rebase(); set_interface_state(AHCI::DeviceDetectionInitialization::DisableInterface); return true; } Optional AHCIPort::try_to_find_unused_command_header() { VERIFY(m_lock.is_locked()); u32 commands_issued = m_port_registers.ci; for (size_t index = 0; index < 32; index++) { if (!(commands_issued & 1)) { dbgln_if(AHCI_DEBUG, "AHCI Port {}: unused command header at index {}", representative_port_index(), index); return index; } commands_issued >>= 1; } return {}; } void AHCIPort::start_command_list_processing() const { VERIFY(m_lock.is_locked()); VERIFY(m_hard_lock.is_locked()); VERIFY(is_operable()); dbgln_if(AHCI_DEBUG, "AHCI Port {}: Starting command list processing.", representative_port_index()); m_port_registers.cmd = m_port_registers.cmd | 1; } void AHCIPort::mark_command_header_ready_to_process(u8 command_header_index) const { VERIFY(m_lock.is_locked()); VERIFY(m_hard_lock.is_locked()); VERIFY(is_operable()); VERIFY(!m_wait_for_completion); m_wait_for_completion = true; dbgln_if(AHCI_DEBUG, "AHCI Port {}: Marking command header at index {} as ready to process.", representative_port_index(), command_header_index); m_port_registers.ci = 1 << command_header_index; } void AHCIPort::stop_command_list_processing() const { VERIFY(m_lock.is_locked()); VERIFY(m_hard_lock.is_locked()); dbgln_if(AHCI_DEBUG, "AHCI Port {}: Stopping command list processing.", representative_port_index()); m_port_registers.cmd = m_port_registers.cmd & 0xfffffffe; } void AHCIPort::start_fis_receiving() const { VERIFY(m_lock.is_locked()); VERIFY(m_hard_lock.is_locked()); dbgln_if(AHCI_DEBUG, "AHCI Port {}: Starting FIS receiving.", representative_port_index()); m_port_registers.cmd = m_port_registers.cmd | (1 << 4); } void AHCIPort::power_on() const { VERIFY(m_lock.is_locked()); VERIFY(m_hard_lock.is_locked()); dbgln_if(AHCI_DEBUG, "AHCI Port {}: Power on. Cold presence detection? {}", representative_port_index(), (bool)(m_port_registers.cmd & (1 << 20))); if (!(m_port_registers.cmd & (1 << 20))) return; dbgln_if(AHCI_DEBUG, "AHCI Port {}: Powering on device.", representative_port_index()); m_port_registers.cmd = m_port_registers.cmd | (1 << 2); } void AHCIPort::spin_up() const { VERIFY(m_lock.is_locked()); VERIFY(m_hard_lock.is_locked()); dbgln_if(AHCI_DEBUG, "AHCI Port {}: Spin up. Staggered spin up? {}", representative_port_index(), m_parent_handler->hba_capabilities().staggered_spin_up_supported); if (!m_parent_handler->hba_capabilities().staggered_spin_up_supported) return; dbgln_if(AHCI_DEBUG, "AHCI Port {}: Spinning up device.", representative_port_index()); m_port_registers.cmd = m_port_registers.cmd | (1 << 1); } void AHCIPort::stop_fis_receiving() const { VERIFY(m_lock.is_locked()); VERIFY(m_hard_lock.is_locked()); dbgln_if(AHCI_DEBUG, "AHCI Port {}: Stopping FIS receiving.", representative_port_index()); m_port_registers.cmd = m_port_registers.cmd & 0xFFFFFFEF; } bool AHCIPort::initiate_sata_reset(ScopedSpinLock>& main_lock) { VERIFY(m_lock.is_locked()); VERIFY(m_hard_lock.is_locked()); dbgln_if(AHCI_DEBUG, "AHCI Port {}: Initiate SATA reset", representative_port_index()); stop_command_list_processing(); full_memory_barrier(); size_t retry = 0; // Try to wait 1 second for HBA to clear Command List Running while (retry < 5000) { if (!(m_port_registers.cmd & (1 << 15))) break; // The AHCI specification says to wait now a 500 milliseconds IO::delay(100); retry++; } full_memory_barrier(); spin_up(); full_memory_barrier(); set_interface_state(AHCI::DeviceDetectionInitialization::PerformInterfaceInitializationSequence); // The AHCI specification says to wait now a 1 millisecond IO::delay(1000); // FIXME: Find a better way to opt-out temporarily from Scoped locking! { main_lock.unlock(); VERIFY_INTERRUPTS_ENABLED(); full_memory_barrier(); set_interface_state(AHCI::DeviceDetectionInitialization::NoActionRequested); full_memory_barrier(); if (m_wait_connect_for_completion) { retry = 0; while (retry < 100000) { if (is_phy_enabled()) break; IO::delay(10); retry++; } } main_lock.lock(); } dmesgln("AHCI Port {}: {}", representative_port_index(), try_disambiguate_sata_status()); full_memory_barrier(); clear_sata_error_register(); return (m_port_registers.ssts & 0xf) == 3; } void AHCIPort::set_interface_state(AHCI::DeviceDetectionInitialization requested_action) { switch (requested_action) { case AHCI::DeviceDetectionInitialization::NoActionRequested: m_port_registers.sctl = (m_port_registers.sctl & 0xfffffff0); return; case AHCI::DeviceDetectionInitialization::PerformInterfaceInitializationSequence: m_port_registers.sctl = (m_port_registers.sctl & 0xfffffff0) | 1; return; case AHCI::DeviceDetectionInitialization::DisableInterface: m_port_registers.sctl = (m_port_registers.sctl & 0xfffffff0) | 4; return; } VERIFY_NOT_REACHED(); } }